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SUMMARY 

The numerical manifold method (NMM) builds up a unified framework that is used to describe continuous 

and discontinuous problems; it is an attractive method for simulating a cracking phenomenon. Taking into 

account the differences between the generalized degrees of freedom of the physical patch and nodal 

displacement of the element in the NMM, a decomposition technique of generalized degrees of freedom is 

deduced for mixed mode crack problems. An analytic expression of the energy release rate, which is 

caused by a virtual crack extension technique (VCET), is proposed. The necessity of using a symmetric 

mesh is demonstrated in detail by analysing an additional error that had previously been overlooked. 

Because of this necessity, the local mathematical cover refinement is further applied. Finally, four 

comparison tests are given to illustrate the validity and practicality of the proposed method. The 

abovementioned aspects are all implemented in the high-order NMM, so this study can be regarded as the 

development of the VCET and can also be seen as a prelude to an h-version high-order NMM. 
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1. INTRODUCTION 

To date, various technologies and strategies of extracting stress intensity factors (SIFs, particularly the 

coefficient of a singularity) [1] or of calculating strain-energy release rates have been put forward in 

computational linear elastic fracture mechanics. First, Griffith’s energy [2] can be used. The 

path-independent line J-integral was suggested by [3]. The displacement extrapolation technique based on 

SIF curves has also been employed [4]. A quarter-point elements technique was originated [5–7]. By 

following the concept of the crack closure integral [8], the virtual crack-closure technique was presented 

by [9, 10]. The field decomposition was presented [11] for mixed mode crack. The equivalent domain 

integral was derived [12, 13]. An interaction integral technique involving actual and auxiliary fields can be 

found in [14, 15]. The discontinuous enrichment function [16] can also reflect the singularity of the crack 

tip fields. Some similar techniques were then used in the extended finite element method (XFEM) [17, 18]. 

By making use of the properties of XFEM, an analytical approach to extract the strain-energy release rates 

was provided by [19]. Under the context of XFEM, a direct analytical method to extract the mixed-mode 

strain-energy release rates from Irwin’s integral was given by [20], and then this method was extended to 

high-order XFEM [21,22]. 

Alternatively, the stiffness derivative technique (SDT) and virtual crack extension techniques (VCET) 

were proposed, respectively [23, 24]. Whereafter, the VCET was applied to determine the SIFs of mode-I 

and mode-II by carrying out virtual crack extension along both the parallel and perpendicular directions to 

crack surface [25]. A combination of the VCET and field decomposition technique was initially 

implemented to extract mixed-mode SIFs by carrying out virtual crack extension in only the parallel 

direction to crack surface [26]. A double VCET for crack growth stability assessment was described by 

[27]. Based on an energy principle and the VCET, an approach that does not require the use of symmetric 

crack-tip mesh nor crack-tip singular elements was developed [28]. The VCET was used for simulation of 

the fatigue crack propagation by [29, 30]. In order to avoid using finite difference approximation, which 

can lead to calculation error, an analytical expression for the energy release rate was derived [31]; another 

explicit expression for energy changes due to VCET was formulated based on a variation of isoparametric 

element mappings [32]. A new direct-integration technique for the VCET using variational theory was 

presented in [33]. A blend of the VCET and field decomposition technique was implemented to decompose 

there-dimensional mixed-mode energy release rates [34].  

The concept of shape design sensitivity analysis [35] was applied to calculate the strain-energy release 

rate [36]. And then, the equivalent domain integral [37] and the interaction integral [38] were used for the 

sensitivity analysis of cracked bodies. From the view of the shape design sensitivity analysis, where the 

crack length is regarded as a single design variable, an analytical method to calculate the stiffness 

derivative was put forward and the equivalence of the stiffness derivative and the equivalent domain 

integral was proved in detail by [39], and a new error estimator was suggested by [40, 41] for the 

mixed-mode energy release rates. Consider that the task of a shape design sensitivity analysis or shape 

optimization is to obtain the variation of the structural response along with the change in the design 

parameters, therefore, a generalized shape optimization tool proposed by [42, 43] may can be applied to 
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estimate strain-energy release rates or SIFs. Besides, the continuum shape sensitivity methods to calculate 

mixed-mode SIFs for isotropic and orthotropic functionally graded material were presented by [44, 45], 

respectively. Recently, this tool based on XFEM and level set [46] was employed in the shape optimization 

of bi-material structures [47] and the damage process sensitivity analysis [48]. 

On the other hand, the NMM with its dual cover system, i.e. the mathematical cover and the physical 

cover, was initially developed in [49]. It is worth mentioning that a simplex integration method for NMM, 

finite element method (FEM), discontinuous deformation analysis, and analytical analysis was proposed in 

[50]. From a more general perspective, the NMM also falls into methods based on the partition of unity 

(PU) [51]. Therefore, by increasing the order of PU function, it is easier to raise the order of approximate 

solutions. Formulations of the high-order approximations were derived in detail in [52]. Correspondingly, 

the simplex integration strategy and programming of high-order NMMs were studied in [53–55]. Like 

other PU-based methods, the linear dependence problem [56] exists in high-order NMM and leads directly 

to the singularity in a global stiffness matrix. An algorithm for predicting the rank deficiency of the global 

stiffness matrix was proposed in [57], and this algorithm was extended in [58]. Recently, a new procedure 

to eliminate the linear dependence was created by [59]. It is worth mentioning that the 

S(strain)-R(rotation)-based NMM proposed by [60] enhances the ability of dealing with large deformation 

and large rotation effectively. Complex crack problems were modelled using the NMM in [61]. The 

cracking behaviour of rock mass containing inclusions was modelled using the NMM by [62]. Extraction 

of stress intensity factors on honeycomb elements by the NMM was completed in [63]. Not long ago, some 

new strategies for solving the issues in the NMM for simulation of crack propagation were proposed in 

[64]. 

In 2002, the federation pattern of the SDT or VCET and the displacement field decomposition 

techniques (DFDT) was introduced into the NMM in [65]. This usage pattern was initially given in [28] for 

the FEM. In [65], the finite difference scheme was used to approximate the stiffness derivative, and the 

nodal displacement vector still appeared explicitly in the expression of the potential energy of a system. 

Strictly speaking, for cover-based methods such as the NMM, the generalized degrees of freedom vector 

should be present in the expression of the potential energy rather than the nodal displacement vector. 

Moreover, before [28], some geometry symmetric elements with respect to the local x-axis of the local 

crack-tip coordinate system were almost always adopted in the abovementioned usage pattern. However, 

this symmetrical configuration was removed by [28] and [65]. Thus, an additional error, which had been 

overlooked, was introduced in spite of the fact that the error can be suppressed by mesh refinement. 

In this study, a decomposition technique aiming at the generalized degrees of freedom is proposed. 

Furthermore, using the VCET, a new analytic expression of stiffness derivative is derived based on the 

simplex integration method [50]. Moreover, the sources of the additional error, which is named as the 

mixed terms error in this work, are analysed in detail. In addition, the local mathematical cover refinement 

(LMCR), which involves the refinement of the domain adjacent to the crack-tip, is further applied in the 

high-order NMM advised in [66]. In fact, this LMCR has been used in [65], [67], and [68] with the 

first-order NMM. Therefore, this study can be regarded as the development of the VCET and SDT and can 
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also be seen as a prelude to an h-version high-order NMM. 

 

2. BRIEF DESCRIPTION OF NMM 

The NMM [49] is composed of four related parts [69]: the cover systems, the partition of unity, the NMM 

space, and the variational formulation fitted to the method. One can refer to the references [49], [64], [69], 

and [70] for more details about the orthodox statements of the NMM. 

The problem domain,  , as shown in figure 1, consists of a black solid boundary and black dotted line 

representing a crack surface. The mathematical cover (MC) is a collection of simply connected geometries, 

i.e. the red polygons and circles. These simply connected geometries can, in principle, be of arbitrary shape. 

Any simply connected geometry is called a mathematical patch (MP). Different MPs can overlap partially, 

but all the MPs must cover the   totally. The configuration of the MC, including the size and shape of the 

geometries, determines the precision of the solution. By cutting all of the MPs, one after another, with the 

 ’s components, including the boundary, material interface, and the crack, the physical patches (PPs) are 

created. All of the PPs then form the physical cover (PC), in other words, the PC is the collection of all PPs. 

Each PP might be divided into several domains by the neighbouring PPs, and a manifold element (ME) is a 

common part of a group of PPs. 

Next, the six-node triangular mesh is taken as an example (figure 2) to illustrate the forming process of 

the ME in more detail because it is closely related to the assembly of the global stiffness matrix. 

 

Assume that the triangle ABC  is the problem domain,  . The thick lines AB, BC, and CA are the 

boundaries of  , whereas the thick dashed line DF is either a weak or strong discontinuity interface. 

Boundaries and interfaces are referred to as the components of  . Considering the triangle 142536 , under 

the finite element mesh cover, all the triangles sharing an common node, which is referred to as a ―star‖ in 

NMM, constitute an mathematical patch MP (it is a quadrangle or hexagon in this study). Let us see node 1, 

the corresponding MP is MP1 (a hexagon), where the subscript ―1‖ stands for the number of node 1; in the 

same way, for the rest nodes from nodes 2 to 6, the MPs are MP2 (a hexagon), MP3 (a quadrangle), MP4 (a 

quadrangle), MP5 (a quadrangle), and MP6 (a quadrangle), respectively, as shown in figure 2. The physical 

patches are formed by slicing the mathematical patches with the components of  . For instance (see 

figure 3), firstly, let us focus on MP1 (a red hexagon) and the problem domain  ; then slice MP1 using 

boundary lines AB, BC, CA, and interface line DF so that we can obtain points B’, C’, and F’; next 

generate physical patches PP1-1 and PP1-2. Therefore, we can say that physical patches PP1-1 and PP1-2 all 

stem from MP1. 
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In the similar fashion, we can obtain PP2, PP3-1, PP3-2, PP4-1, PP4-2, PP5-1, PP5-2, PP6-1, and PP6-2, as 

shown in figure 4. Then, the element ME is the overlap of PP1-2, PP2, PP3-2, PP4-2, PP5-2, and PP6-2, 

implying that every ME is affected by six physical patches in the used high-order NMM. 

 

In this paper, the phenomenon where one mathematical patch is subdivided into several physical patches 

is referred to as the ―MP split‖ or ―star split‖, such as mathematical patch MP1 is split into two physical 

patches PP1-1 and PP1-2. 

 

On the other hand, the shape function of the six-node triangle is chosen as the partition of unity, as 

shown in figure 5. The area coordinates of any point ( , )x y  in element ME is 

 , 1,2,3
2

k k k
k

a b x c y
L k

 
 


                               (1) 

where 

1 1

2 2

3 3

1
1

d e t 1
2

1

s t

s t

s t

 
  
 
  

                                    (2) 

and 

                         1 2 3 3 2 ,a s t s t   1 2 3,b t t   1 3 2c s s                              

(3) 

with cyclic rotation of indices 1, 2, and 3. 1 1( , )s t , 2 2( , )s t  and 3 3( , )s t  are three ―stars‖ of the triangular 

mesh covering the element ME. 

For the three-node triangle, the partition of unity can be chosen as 

1 1 2 2 3 3, ,L L L                                     (4) 

whereas for the six-node triangle, the partition of unity should be 

Corner nodes: 

(2 1) , 1,2,3k k kL L k                                    (5) 

Mid-side nodes: 

4 1 2 5 2 3 6 3 14 , 4 , 4L L L L L L                                (6) 

and , 1,2,...,6i i   can be written as 
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
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    
     
     
     

     
     
     
        

    

                        (7) 

where , , 1,2,...,6ijf i j   should be interpreted as some constants with respect to , ( , 1,2,3)i is t i j  . Their 

expressions can be found in [71]. Moreover, in this study, we take constants to be local approximations of 

PPs. 

 

3. FORMULA FOR THE STIFFNESS DERIVATIVE 

In this study, the local approximation of each PP is a constant and the displacement functions ( , )u x y  and 

( , )v x y  of any point ( , )x y  in a ME can be written as [49] 

6
2 1

1 2

( , ) 0( , )

0 ( , )( , )

i i

i i i

x y du x y

x y dv x y









   
    

    
                          (8) 

where 
T

1 2 3 4 5 6 7 8 9 10 11 12( , , , , , , , , , , , )d d d d d d d d d d d d  is the generalized degrees of freedom vector of those 

patches sharing the same element. 

Considering the global coordinate system, in the NMM framework, the total potential energy   of a 

system can be written as 

T T1
=

2 global

 
  
 

D KD D f                                (9) 

where D  is the generalized degrees of freedom vector; K  is the stiffness matrix; f  is the equivalent 

force vector. Superscript T  denotes transpose, and  global
  is the representation in the global coordinate 

system. 

As shown by Parks [23] and Hellen [24], the energy release rate G  of the system for the unit crack 

extension can be calculated by differentiating the total potential energy with respect to the crack length 

T
T T1

( )
2

global

G
b l b l b l b l

    
       

    

D K f
KD f D D D                  (10) 

where l  is initial crack length and b  is thickness, respectively. The term of / l K  the so-called 

stiffness derivative. Under the context of the shape design sensitivity analysis, l  can be seen as a design 

variable [39].The expression KD f  represents the system of equations and must therefore vanish. If we 

assume that the equivalent force vector f  does not change with the crack length, Eq. (10) becomes 
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T1

2 global

G
b l b l

  
    

  

K
D D                            (11) 

In [65], which is about the NMM, by using the difference approximation, the energy release rate G  can 

be written as 

T T T1 1 ( ) ( ) 1

2 2 2
global

l l l
G

b l b l b l

     
      

   

K K K K
U U U U U U            (12) 

where U  is the nodal displacement vector. However, in the framework of the NMM, it 

should be pointed out that the above equation is valid only if one manifold element coincides exactly with 

the triangular mesh covering it. The above expression generally does not hold especially near the crack 

surfaces unless the MC matches the PC. 

 

For example, figure 6(a) and (b) are the configurations of the pre-deformation and post-deformation, 

respectively. The bold black dotted line represents the crack surfaces. Here, we only pay attention to the six 

hatched elements, i.e., ME1, ME2, ME3, ME4, ME5, and ME6. The pulling force F  is imposed on the 

configuration. Before deformation, several MPs covering these elements overlap each other; thus, only 

three triangular meshes are visible, i.e. the three purple triangles shown in figure 6(a). After deformation, 

the triangular meshes near the crack surfaces are all clearly visible, i.e. the three red triangles and three 

blue triangles, as shown in figure 6(b). In the case of figure 6, Eq. (12) obviously does not hold. 

In this study, instead of the difference quotient / l K , we implement a new computational formula 

for partial derivative of the element stiffness matrix based on the simplex integration proposed by Shi [49] 

with assistance from VCET. Figure 7 shows the simplest way of performing a virtual crack extension in 

which the crack-tip point is shifted in the crack direction by a small distance l . In this way, only the 

crack-tip elements contribute to the matrix / l K , and the term / l f  is null except when external 

forces are applied to the crack-tip elements. In addition, l  is the initial length of crack line segment AB , 

whereas   is the inclined angle between crack line segment AB  and the positive direction of the 

x -axis. 

For any point P( )x, y  on the line AB , its coordinate can be expressed as 

A

A

cos

sin
global

x x l

y y l





  
 

  
                                 (13) 

where A A( )x , y  is the coordinate of point A . From Eq. (13), we can obtain 
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d
cos

d

d
sin

d global

x

l

y

l





 
 

 
 

 
 

                                   (14) 

After a continuum mechanics analogy, Eq. (14) can be named velocity field [39], which is of paramount 

importance in each shape design sensitivity analysis. As we know, the element stiffness matrix is 

 T( , ) ( , ) ( , )d
global

x y x y x y A k B EB                           (15) 

where ( , )x yk  is a quadratic functions with respect to ,x y  and point ( , )x y  is an arbitrary point in the 

triangular element, e.g. 123 , which is the domain of integration. E  is the elastic constitutive matrix and 

the strain-nodal displacement matrix B  can be written as 

,

,

, ,

0

0 , 1,2,...,6

i x

i y

i y i x
global

i





 

  
  

   
  

  

B
                        (16) 

By using the simplex integration proposed by Shi [50], k  can be expressed as a multivariate quadratic 

function, i.e. 1 1 2 2 3 3 1 1 2 2 3 3( , , , , , , , , , , , )x y x y x y s t s t s tk . If the crack-tip is at point 1 1( , )x y , and ―star‖ 1 1( , )s t  

coincide with point 1 1( , )x y , we can obtain 

1 1 1 1

1 1 1 1 1 1 1 1

d d d d
cos ( ) sin ( )

d d d d
global

x y s t

l x l y l s l t l x s y t
 

         
        

         

k k k k k k k k k
  (17) 

Assume that the element nodes and the ―stars‖ are all numbered randomly in a counterclockwise direction, 

so that there are the following nine cases: 

Crack-tip — point ( , )i ix y  — ―star‖ ( , )j js t , , 1,2,3i j                  (18) 

where ―—‖ denotes that they are concurrent. For each case, one can obtain an expression similar to Eq. 

(17). 

For any point, on the other hand, there is the following transformation 

T T T
cos sin

( , ) [( , ) ( , ) ]
sin cos

local global tip

a a
x y x y x y

a a

 
  

 
                    (19) 

where ( , )localx y  and ( , )globalx y  are the local crack-tip coordinate and the global coordinate of any point, 

respectively. ( , )tipx y  is the global coordinate of the crack-tip point. Because the determinant of the 

Jacobian matrix used for coordinate transformation is unit, the modality of ( / )locall k  in the local 

crack-tip coordinate system ( 0  ) is the same as one of ( / )globall k  in the global coordinate system. 

Hence, Eq. (17) becomes 
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1 1local local
l x s

    
   

     

k k k
                            (20) 

where  
local

  is the representation in the local crack-tip coordinate system. Because the analytical 

expressions of k  can be obtained through the simplex integration [50], Eq. (20) is then easy to calculate. 

 

4. DECOMPOSITION TECHNIQUE OF GENERALIZED DEGREE OF 

FREEDOM 

For FEM, in the local crack-tip coordinate system, Ishikawa et al. [11] pointed out that for a mixed mode 

crack, as shown in figure 8, 

the mode-I and mode-II decomposed displacement components at arbitrary point A can be expressed as 

follows: 

A A B A A B

A A B A A B

1 1
( ), ( )

2 2

1 1
( ), ( )

2 2

I II

I II
local

u u u u u u

v v v v v v

 
    

 
     
 

                        (21) 

where A A( , )I Iu v  and A A( , )II IIu v  are the Mode-I and Mode-II decomposed displacement with respect to 

point A, respectively. A A( , )u v  is the displacement of point A, and B B( , )u v  is the displacement of point B, 

which is the mirror image of point A. 

Next, the decomposition technique of generalized degree of freedom for mixed-mode crack problems 

will be deduced based on Eq. (21), as shown in figure 9. Assume that the equilibrium equation of the 

system is established in the local crack-tip coordinate system, and then solve the equation to obtain the 

generalized degree of freedom vector with respect to the local crack-tip coordinate system.  

For any crack-tip element and it’s six ―stars‖, i.e. element MEA (here subscript ―A‖ means that the 

element contains point A) and ―stars‖ 1,2,3,4,5 or 6, one can construct the mirror element and mirror 

―stars‖, i.e. element MEB (here subscript ―B‖ means that the element contains point B) and ―stars‖ 

1*,2*,3*,4*,5* or 6*. For the arbitrary nodal point A of the crack-tip element, one can obtain 

 
6

A 2 1A

A A
1 A 2A A

( , ) 0

0 ( , )

i i

i i i local

x y du
d

x y dv









     
       

      
 φ                  (22) 

where 

1A 2A 3A 4A 5A 6A

A

1A 2A 3A 4A 5A 6A

0 0 0 0 0 0

0 0 0 0 0 0
local

     

     

  
  
  

φ         (23) 

One can refer to Eq. (7). And  
A

d  is the solution vector corresponding to the element containing the 

point A. However, for the mirror image point B, because ―stars‖ 1*,2*,3*,4*,5* and 6* are arranged in 
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clockwise direction, we should rearrange them in the counterclockwise direction and redefine some 

variables, as shown below: 

* *

2 2

* *

B 1 1

* *

3 3

1
1

d e t 1
2

1
local

s t

s t

s t

  
  
   
  

  

                           (24) 

 * * * * * * * *

1B 3 2 2 3 1B 3 2 1B 2 3, ,
local

a s t s t b t t c s s                            (25) 

In the local crack-tip coordinate system, it is exits that 

*
B A

*
B A

, , 1,2,...,6
i i

i ilocal local

sx x s
i

ty y t

          
                        

                  (26) 

where 
* * * *

1 1 2 2( , ), ( , )s t s t  and 
* *

3 3( , )s t  are the coordinates of ―stars‖ 1*, 2* and 3* respectively. Thus, we have 

 B A B A B A B A, , , , 1,2,3i i i i i i local
a a b b c c i                          (27) 

Further, for the mirror image point B, one can obtain 

 
6

B 2 1B

B B
1 B 2B B

( , ) 0

0 ( , )

i i

i i i local

x y du
d

x y dv









     
       

      
 φ                 (28) 

where 

1B 2B 3B 4B 5B 6B

B

1B 2B 3B 4B 5B 6B

0 0 0 0 0 0

0 0 0 0 0 0
local

     

     

  
  
  

φ     (29) 

One can also refer to Eq. (7). And  
B

d  is the solution vector corresponding to the element containing the 

point B. Using Eqs. (26) and (27), the following relationship can be verified easily 

 A B local
φ φ                                     (30) 

Now, due to Eq. (21), we have 

A A

A A A A

A A

,
I II

I II

I II local

u u

v v

    
     

    
φ d φ d                           (31) 

where 

 

 

T
1 2 3 4 5 6

A A A A A A A

T
1 2 3 4 5 6

A A A A A A A

I I I I I I I

II II II II II II II
local

 
 
  
 

d d d d d d d

d d d d d d d
                    (32)                

and 
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 

 

T
2 2 1

A A(2 1) B(2 1) A(2 ) B(2 )

T
2 1 2

A A(2 1) B(2 1) A(2 ) B(2 )

1
( 1) , ( 1)

2
, 1,2, ,6

1
( 1) , ( 1)

2

i i i

I i i i i

i i i

II i i i i
local

d d d d

i

d d d d



 



 

 
     

 
      
 

d

d
     (33) 

For six nodal points of one element, e.g. A1, A2, A3, A4, A5 and A6, we have 

   A A A A A A,I I II IIlocal local
 u ψ d u ψ d                           (34) 

where 

 

 

T
1 2 3 4 5 6

A A A A A A A

T
1 2 3 4 5 6

A A A A A A A

I I I I I I I

II II II II II II II
local

 
 
  
 

u u u u u u u

u u u u u u u
                     (35) 

and 

 

 

T

A A A

T

A A A

,
, 1,2, ,6

,

i i i

I I I

i i i

II II II
local

u v
i

u v

 
  
  
 

u

u
                      (36) 

and 

  T
1 2 3 4 5 6

A A A A A A A
local

ψ φ φ φ φ φ φ                        (37) 

where 

T 1A 2A 3A 4A 5A 6A

A

1A 2A 3A 4A 5A 6A

0 0 0 0 0 0
( ) , 1,2, ,6

0 0 0 0 0 0

i i i i i i

i

i i i i i i

local

i
     

     

  
    
  

φ   (38) 

and 

A A B A A B

A A B A A B

1 1
( ), ( )

2 2
, 1,2, ,6

1 1
( ), ( )

2 2

i i i i i i

I II

i i i i i i

I II
local

u u u u u u

i

v v v v v v

 
    

 
     
 

            (39) 

From Eq. (34), one can obtain 

   1 1

A A A A A A,I I II IIlocal local

  d ψ u d ψ u                         (40) 

By using transformation matrix 

cos sin
Diag( , , , , , ),

sin cos

 

 

 
    

T t t t t t t t                         (41) 

and ―Diag()‖ represents diagonal matrix. Further, we have 

           1 1

A A A A A A,I I II IIlocal global local globallocal local

  d ψ T u d ψ T u             (42) 

Eq. (42) is the so-called the decomposition of generalized degree of freedom. We can then calculate the 
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energy release rate of the system as follows: 

T TA A

A A A A

1 1

1 1
,

2 2

N ce N ce

i i

I I i I i II II i II i

i i local

G G
b l b l 

  
    

  
 

k k
d d d d               (43) 

where Nce  is the number of crack-tip elements. The stress intensity factors IK (mode-I) and 

IIK (mode-II) are then calculated by *I IK E G   and *II IIK E G   respectively, in which *E E  

for plane stress and 
2* / (1 )E E    for plane strain. E  is the Young’s modulus, and   is the Poisson 

ratio. The signs of IK  and IIK  are determined by examining the near crack-tip displacement according 

to their sign conventions. 

Before 1995, as long as a combination of the VCET, SDT, and the DFDT were used to extract the SIFs 

of a mixed mode crack, symmetrical meshes or elements with respect to the x-axis of the local crack-tip 

coordinate system were almost always adopted. If the symmetrical meshes or elements were discarded, it is 

necessary to use an interpolation procedure for calculating the displacement of the mirror point B, as 

proposed in [28]. This is because point B is not always the nodal point of an element. Generally speaking, 

the interpolation procedure is one of the sources of the calculation error. In this study, this type of error is 

called the interpolation error. However, it is much more than this. Next, another source of the calculation 

error will be uncovered; unfortunately, this error source has been previously overlooked. It is enough to 

examine only the computational procedure of the energy release rate Ig  of the crack-tip element MEA, 

which contains the point A, see figure 9. Ig  can be written as 

      

   

A1,1 A1,2 A1,6

1

A

2,1 2,2 2
T T T

T 1 2 6 AA

A A A A A

6

A

A6,1 A6,6

T TA1,1 A2,11 2

A A

1 1
, , ,

2 2

1

2

I

A A

I

I I I I I I

I

I I

b l b l b l

g b l b l
b l

b l b l

b l b

   
 

     
    
                       
  
 

  

 
  



k k k

d
k k

dk
d d d d d

d
k k

k k
d d  

1

A

2
T A6,16 A

A

6

A

,

I

I

I

I local

l b l

 
 
 
 
 
 
 
 
 
 
 
 

 
  
                    

  

d

k d
d

d

    (44) 

where 

1 1 1 2

2 1 2 2

A , A ,

A ,

A , A ,

, , 1,2, ,6
i j i j

i j

i j i j

k k
i j

k k

 
  
  

k                        (45) 

For the sake of brevity, considering only the first term (FTA) of Eq. (44), it is 
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   

1 1 1 2

2 1 2 2

1 1 1 1 1

A1 ,1 A1 ,1

T A1,1 A1 B11 1

A A A A1 B1 A2 B2

A2 B2A1 ,1 A1 ,1

A1 ,1 A1 ,1 A1

A1 A1 A1 B1 B1

1 1
FT ,

2 8

1

8

I I

pure term

k k

d dl l
d d d d

d dk kb l b

l l

k k k
d d d d d

b l l

    
  

                         
     

  
  

 

k
d d

1 1 1,1 A1 ,1

A1 B1 B1

mixed terms
local

k
d d d

l l

 
 
 
 
 
 
 

  
  

   
   

  
  

     (46) 

Each of the crack-tip elements should take turns to play the role of element MEA or element MEB. 

Similarly, for the crack-tip element MEB, which contains the point B, we have 

   

1 1 1 2

2 1 2 2

1 1 1 1 1

B1 ,1 B1 ,1

T B1,1 B1 A11 1

B B B B1 A1 B2 A2

B2 A2B1 ,1 B1 ,1

B1 ,1 B1 ,1 B1

B1 B1 B1 A1 A1

1 1
FT ,

2 8

1

8

I I

pure term

k k

d dl l
d d d d

d dk kb l b

l l

k k k
d d d d d

b l l

    
  

                         
     

  
  

 

k
d d

1 1 1,1 B1 ,1

B1 A1 A1

mixed terms
local

k
d d d

l l

 
 
 
 
 
 
 

  
  

   
   

  
  

    (47) 

The mixed terms of Eqs. (46) and (47) mean that the generalized degree of freedom vector (for NMM) 

or the nodal displacement vector (for FEM) do not match the entries of the element stiffness matrix related 

to point A (or B). Taking the term 1 1B1 ,1

B1 A1

k
d d

l




 as an example, in which B1d  and 

1 1B1 ,1k  are all related 

to the MEB containing the point B, whereas A1d  is related to the MEA containing the point A. For the pure 

terms, however, that is not the case. When calculating the summation of the pure terms and mixed terms, 

these mixed terms are difficult to eliminate. This is believed to be another source of the calculation error. If 

asymmetric meshes or elements are used, the error is more significant. In this paper, this kind of error is 

called the mixed terms error. Perhaps the mixed terms error should receive more attention than the 

interpolation error. It should be pointed out that FTA and FTB should ultimately be counted up together. 

Of course, these mixed terms can be regarded as a contribution to IG  or IIG ; however, their physical 

meaning seem not to be so clear. In the following several paragraphs of this Section, we 

will demonstrate how the mixed terms error may be suppressed when using symmetrical meshes or 

elements. For this purpose, the nodal displacement vector will be employed based on several 

considerations. First, the initial VCET, SDT and DFDT stem from the FEM. Second, the nodal 

displacement vector is more physical meaning than the generalized degree of freedom vector in some cases. 

Taking the mode-I crack under uniform tension  as an example, see figure 10. 

First, let us consider the partitioning of the element stiffness matrix corresponding to the six ―stars‖ of 

the element MEA and extract the following submatrix corresponding to ―star‖ 1: 
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1 1 1 2

2 1 2 2

A1 ,1 A1 ,1

A1 ,1 A1 ,1

local

k k

l l

k k

l l

    
  

   
   
  
     

                               (48) 

The first term of the energy release rate can be expressed as 

 

1 1 1 2

2 1 2 2

A1 ,1 A1 ,1

A1 B1

A1 A1 B1 A1 B1

A1 ,1 A1 ,1
A1 B1

1
( )

1 1 2
,

12 2
( )

2

I

local

k k
u u

l l
u u v v

k kb
v v

l l

                               
      

           (49) 

In this example, we have 

 B1 A1 B1 A1,
local

u u v v                               (50) 

Thus, for point A1, we can obtain 

 A1 A1 A1 A1,I I local
u u v v                               (51) 

Hence, Eq. (49) becomes 

 

1 1 1 2

2 1 2 2

A1 ,1 A1 ,1

A1

A1 A1 A1

A1A1 ,1 A1 ,1

1
,

2
I

local

k k

ul l
u v

vk kb

l l

    
  

                
     

                    (52) 

Whereas for point B1, Eq. (51) can be written as 

 B1 A1 B1 A1,I I local
u u v v                                (53) 

Similarly, for point B1 we can obtain 

   

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

B1 ,1 B1 ,1 B1 ,1 B1 ,1

A1 A1

B1 A1 A1 A1 A1

A1 A1B1 ,1 B1 ,1 B1 ,1 B1 ,1

1 1
, ,

2 2
I

local

k k k k

u ul l l l
u v u v

v vk k k kb b

l l l l

        
    

                                
           

 (54) 

Summing Eqs. (52) and (54), we have 

 

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

A1 ,1 A1 ,1 B1 ,1 B1 ,1

A1

A1 B1 A1 A1

A1A1 ,1 A1 ,1 B1 ,1 B1 ,1

1
,

2
I I

local

k k k k

ul l l l
u v

vk k k kb

l l l l

         
     

                              
             

       (55) 

On the other hand, for a ―star‖, a following 2×2 submatrix (Eq. (56)) came from the element stiffness 

matrix A( )localk  corresponding to the element MEA, which contains the point A. 
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1 1 1 2

2 1 2 2

A , A ,

A , A ,

, , 1,2, ,6
i j i j

i j i j
local

k k
i j

k k

  
   
    

                     (56) 

under the condition that the two elements are symmetrical with respect to the x-axis of the local crack-tip 

coordinate system, in the element stiffness matrix B( )localk  corresponding to the element MEB, which 

contains the point B, a 2×2 submatrix 

1 1 1 2

2 1 2 2

B , B ,

B , B ,

, , 1,2, ,6
m n m n

m n m n
local

k k
m n

k k

  
   
    

                  (57) 

can always be found and make the following relationships hold 

 

1 1 1 21 1 1 2

2 1 2 2 2 1 2 2

B , B ,A , A ,

A , A , B , B ,

m n m ni j i j

i j i j m n m n
local

k kk k

k k k k

   
   
       

                      (58) 

For matrix A( / )locall k  deriving from Eq. (20), a similar relationship can also exist. On the premise of 

using the simplex integration, Eq. (58) can be verified easily by symbolic operation system such as 

MATLAB, Maple or Mathmatics. In the Appendix, taking the three-node triangular mesh as an example, a 

relaxed proof is given. Due to Eq. (58), Eq. (55) becomes 

 

1 1 1 2

2 1 2 2

A1 ,1 A1 ,1

A1

A1 B1 A1 A1

A1A1 ,1 A1 ,1

1
,I I

local

k k

ul l
u v

vk kb

l l

     
   

                    
       

                 (59) 

From Eq. (59) it can be seen that, when there are symmetrical meshes or elements with respect to the 

x-axis of the local crack-tip coordinate system, the mixed terms of mode-I crack are absent in quantitative 

terms. For the mode-II crack the same conclusions can be obtained and need not be repeated here. These 

conclusions can also be applied to numerical integration because numerical integration is an approximate 

of analytic integration. 

 

5. EXTRACTION OF STRESS INTENSITY FACTORS 

In this section, we validate the proposed methods by comparing the numerical results to the existing 

theoretical ones. Only in the first example, are the symmetrical and asymmetrical configurations with 

respect to the x-axis of the local crack-tip coordinate system adopted to demonstrate the necessity of using 

the symmetrical configuration in order to improve the computational accuracy. And only in the same 

example, are the finite difference approximation and the proposed analytic expression of the energy release 

rate used to compare the calculation accuracy. In the rest examples, the unsymmetrical configuration and 

the finite difference approximation are not all considered. 
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5.1 Edge-cracked plate under mode-I loading 

In this example, a finite plate with an edge crack under uniaxial tension is investigated, as shown in 

figure 11(a). The reference KI  was given by Ewalds et al. [72] 

IK F a                                     (60) 

where F  is a modification factor to reflect the size effect, and a is the length of the crack. If / 0.6a W  , 

approximated by 

2 3 4

1.12 0.231 10.55 21.72 30.39
a a a a

F
W W W W

       
           

       
               (61) 

The width and height of the plate are given by W = 1.0m and H = 2.0m, respectively. A plane stress 

condition is assumed with E = 207,000Pa, 0.30  . The far-field tensile stress is given by 
21.0 N / m  . 

The local mathematical cover refinement (LMCR) is adopted near the crack-tip. 

 

 

The KI of plates with different crack lengths ranging from a = 0.1 to 0.6m are calculated. Seventeen 

layers of triangular meshes with LMCR near the crack-tip are used. At the same time, to show the the 

necessity of using the symmetrical configuration, the asymmetrical and symmetrical configurations with 

respect to the x-axis of the local crack-tip coordinate system are adopted, as shown in figure 12 for the case 

of a = 0.1m. For the case of the asymmetrical configuration, some results are listed in Table I. 

 

From Table I, we can see that for the different a the calculation values obtained by finite difference 

approximation are gradually close to the reference along with the reduction of the value of scale. At the 

same time, we can find that the calculation values given by the proposed analytic expression have a better 

precision. 

On the other hand, for the case of the symmetrical configuration with respect to the x-axis of the local 

crack-tip coordinate system, some results are listed in Table II. 

 

 

For the different a , similar to the case of asymmetrical configuration with respect to the x-axis of the 

local crack-tip coordinate system, from Table II, it is can be observed that the more the value of scale 

decrease, the more the calculation value obtained by finite difference approximation is close to the 

reference. For the proposed analytic expression, however, the precision of the calculation value is more 

satisfying, namely, the relative error are all less than 0.83%. Further, when the proposed analytic 

expression is adopted the REs of KI obtained by using asymmetrical and symmetrical configuration are 

shown in figure 13. It is apparent that the accuracy corresponding to symmetrical configuration is better 

than that corresponding to asymmetrical configuration. 
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5.2. Homogenous infinite plate with a central crack 

In figure14, the homogeneous plate containing a central crack (line segment AB) is considered; where W 

= H = 200mm and a = 10mm, and the thickness of the plate is 1mm. Because W/a = H/a = 20, the plate can 

be considered as an infinite one. The material constants are given by E = 210MPa, 0.28  . A plane stress 

condition is assumed. In theory 
1.53.963327N mmIIK a    when 1  MPa. During the numerical 

simulation, the layer numbers (LNs) of the triangular mesh with the LMCR range from 16 to 20 with an 

interval of 2. The calculated KII for different LNs are listed in Table III. It can easily be seen that when the 

MC is gradually refined, KII  converges to the theoretical solution, and when LNs = 20, the RE is within 

0.84%. 

 

5.3. Edge-cracked plate under mixed mode loading 

This example involves an edge-cracked plate in figure 15, which is fixed at the bottom and subjected to 

far-field shear stress 
21.0 N / m   at the top. The width and height of the plate are given by W = 7.0m and 

H = 16.0m, respectively. The crack length is given by a = 3.5m. A plane strain condition is assumed. The 

elastic modulus and Poisson ratio are given by E = 30MPa and 0.25  respectively. During the numerical 

calculation, the LNs of triangular mesh range from 12 to 24 with an interval of 2; the LMCR is also used. 

The calculated KI and KII for different LNs are listed in Table IV. It can easily be seen that, when the MC is 

gradually refined, KI  and KII  both converge to the reference solutions, and when LNs = 24, the relative 

errors are within 1.15% and 1.07% for KI  and KII respectively. 

 

Further, the curves of relative error of KI and KII  vs. DOF are shown in figures 16 and 17, respectively, 

as well as the relative error given by Giner et al. [39]. For the purpose of comparison, the opposite number 

of the relative error given by this study is used in the two figures in order to be consistent with Giner et al. 

[39]. 

From figures 16, for the KI of this example, the convergence rate and relative errors obtained by the 

proposed method seems to be slightly faster and slightly more than that given by the method [39] 

respectively. Whereas, the relative errors obtained by the two methods are all approximate zero along with 

the increasement of DOF. For the KII of this example, as we can see from figure 17, the two methods have 

roughly the same convergence rate. And the relative error obtained by the proposed method is slightly 

lower than the one given by the other method. However, considering the following two points: one, both 

methods all use analytic expression for the stiffness derivative. Thus, the truncation error caused by the 

difference approximation can be avoided; two, the symmetrical mathematic cover with respect to the 

x-axis of the local crack-tip coordinate system is employed by this study. Therefore, the interpolation error 

and the mixed terms error cannot be involved. The h-adaptive refinement utilized by [39] can achieve the 

same effect. And we have reasons to believe that the difference will be smaller if the number of DOF is 

further increased. 
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5.4. Square plate with an inclined center crack subjected to tension 

A square plate with an inclined center crack subjected to uniform tension is considered in figure 18. The 

plate has a dimensions of W = H = 10.0m, half crack length of a = 1.0m, and the uniform tension   is 

taken to be unity. The reference solution is [73] 

2cos , sin cosI IIK a K a                                 (62) 

The material constants are given by E = 210MPa and 0.28   respectively, and a plane stress condition is 

assumed. During the simulation, six inclined angles, i.e. β = 0  , 15  , 30  , 45  , 60  and 75  , are 

examined.  

 

Taking the case of β = 60  as an example, six different discrete models with 652, 810, 1062, 1236, 1512, 

and 1782 elements are adopted to examine the trend of convergence of the proposed methods. The results 

are listed in Table V, from which we can see that the more the number of elements, the higher the precision. 

In addition, figure 19 shows the normalized KI and KII with different the number of elements. It can be 

observed that the normalized KI and KII are all tend to ―1‖ along with the increment of the number of 

elements. 

 

 

Thirty layers of triangular meshes with LMCR near the crack-tips are always used for all of the cases. 

The SIFs are plotted in figure 20. The results obtained by the present methods agree well with the 

reference solutions. 

 

Like XFEM [17, 18], the tip or discontinuous enrichment function was also employed by NMM in [74]. 

The results obtained by the proposed methods and that given by using tip enrichment function [74] are 

shown in figure 21. As we can see, these calculation results can be considered to be similar. For this 

example, it is worth mentioning that about 3560 elements are adopted by [74]; whereas, in this study, 

because the LMCR is used, the maximum of the number of elements is reduced to about 1800 (see Table V) 

to achieve the acceptable accuracy. 

 

6. CONCLUSION 

This work was devoted to the establishment of a technique aiming to decompose the generalized degrees 

of freedom for mixed-mode crack problems. The new technique is tailor-made for the cover-based methods 

or for the methods involving the generalized degree of freedom. In addition, by means of the virtual crack 

extension technique and the simplex integration method, an analytic expression of the energy release rate 

or the stiffness derivative was obtained. The analytic expression can also evade the error, which is caused 

by the difference approximation. Moreover, when the decomposition technique of generalized degrees of 

freedom or the displacement field decomposition technique is used to extract stress intensity factors, a 

detailed analysis was given to show that it is necessary to adopt symmetric meshes or elements with 

respect to the horizontal axis of the local crack-tip coordinate system. Furthermore, the local mathematical 
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cover refinement was further applied in the high-order NMM. The implementation of the local 

mathematical cover refinement is expected to be the basis of an h-version of NMM. The validity of the 

proposed methods was verified by comparing the numerical solutions with the analytical ones. 

 

APPENDIX 

Proposition. In three-node triangular mesh-based NMM, for any submatrix of Ak  corresponding to the 

three ―stars‖ of any element MEA 

1 1 1 2

2 1 2 2

A , A ,

A , A ,

, , 1,2,3
i j i j

i j i j

k k
i j

k k

 
 

  
                           (A1) 

under the condition that the elements MEA, MEB and the triangular meshes covering them are symmetrical 

with respect to the x-axis of the local crack-tip coordinate system, in matrix Bk , a submatrix 

1 1 1 2

2 1 2 2

B , B ,

B , B ,

, , 1,2,3
m n m n

m n m n

k k
m n

k k

 
  
  

                            (A2) 

can always be found and make the following relationships hold 

 
1 1 1 21 1 1 2

2 1 2 2 2 1 2 2

B , B ,A , A ,

A , A , B , B ,

m n m ni j i j

i j i j m n m n

k kk k

k k k k

  
  
     

                         (A3) 

Proof. Considering element MEA and triangle 123  covering MEA are shown in figure A1, where point 

A1, A2 and A3 are the three nodes of the MEA, whereas points 1, 2 and 3 are the three ―stars‖. Manifold 

element MEB and triangle 2*1*3*  are the symmetry geometries of MEA and 123 , respectively. Points 

B1, B2 and B3 are the three nodes of MEB, whereas points 1*, 2* and 3* are the three ―stars‖. 

1. For any point A A( , )x y in 123 , of cause point A A( , )x y  is also inside of element MEA, we define 

 
A A A A A

A

A

, 1, 2,3
2

k k k

k

a b x c y
L k

 
 

                               (A4) 

where 

1 1

A 2 2

3 3

1
1

d e t 1
2

1

s t

s t

s t

 
 

 
 
  

                                    (A5) 

and 

1A 2 3 3 2 1A 2 3 1A 3 2, ,a s t s t b t t c s s                                (A6) 

with cyclic rotation of indices 1, 2, and 3. 1 1 2 2( , ),( , )s t s t  and 3 3( , )s t  are the coordinates of ―stars‖ 1, 2 and 3, 

respectively. The corresponding partition of unity is 

javascript:void(0);
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1A 1A 2A 2A 3A 3A, ,L L L                                    (A7) 

In matrix form, it is 

1A 11A 12A 13A

2A 21A 22A 23A A

3A 31A 32A 33A A

1f f f

f f f x

f f f y







    
    

    
    
    

                               (A8) 

where 

A A

1A 2A 3A

A A A

, , , 1, 2,3
2 2 2

iA i i

i i i

a b c
f f f i   

  
                         (A9) 

 

2. For any point B B( , )x y  in 2*1*3* , we define 

 
B B B B B

B

B

, 1, 2,3
2

k k k

k

a b x c y
L k

 
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                             (A10) 

where (please note the small differences from Eq.(A5).) 

* *

2 2

* *

B 1 1

* *

3 3

1
1

d e t 1
2

1

s t

s t

s t

 
 

   
 
 

                                    (A11) 

and (please note the small differences from Eq. (A6).) 

* * * * * * * *

1B 1 3 3 1 1B 1 3 1B 3 1, ,a s t s t b t t c s s                                (A12) 

with cyclic rotation of indices 1*, 2* and 3*. Where 
* * * *

1 1 2 2( , ), ( , )s t s t  and 
* *

3 3( , )s t  are the coordinates of 

―stars‖ 1*, 2* and 3* respectively. The corresponding partition of unity is 

1B 1B 2B 2B 3B 3B, ,L L L                                  (A13) 

In matrix form, it is 

1B 11B 12B 13B

2B 21B 22B 23B B

3B 31B 32B 33B B

1f f f

f f f x

f f f y







    
    

    
    
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                            (A14) 

where 

B B B

1B 2B 3B

B B B

, , , 1, 2,3
2 2 2

i i i

i i i

a b c
f f f i   

                         (A15) 

Due to the symmetry, it is the case that 

*
B A

*
B A

, , 1,2,3
i i

i i

sx x s
i

ty y t

       
         

         
                       (A16) 
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Thus, we have 

B A B A B A B A, , , , 1,2,3i i i i i ia a b b c c i                           (A17) 

Further, one can obtain 

1B 1A 2B 2A 3B 3A, , , 1,2,3i i i i i if f f f f f i                          (A18) 

3. Considering the following submatrix 

 
T

d , , 1,23
e

ij i j i j



  k B DB                          (A19) 

where D  is the elasticity matrix and 
e  is the domain occupied by an element. The entries of the 

strain-displacement matrix iB  are 
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f f

 
  
 
  

B
                            (A20) 

Because D  is a symmetric constant matrix and does not affect the desired conclusion in this Appendix, 

we will adopt the following expression to simplify 

 
T

* d , , 1,23
e

ij i j i j



  k B B                          (A21) 

and we have 
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 

 k B B
   (A22) 

where 
e  is the area of an element. Using Eq. (A18), for elements MEA and MEB, according to the 

following one-to-one correspondence 

* * * * * *

A1,1 B2,2 A1,2 B2,1 A1,3 B2,3

* * * * * *

A2,1 B1,2 A2,2 B1,1 A2,3 B1,3
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A3,1 B3,2 A3,2 B3,1 A3,3 B3,3

, ,

, ,

, ,

  

  
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k k k k k k

k k k k k k

k k k k k k

                     (A23) 

the following relationships are always valid: 

1 1 1 21 1 1 2

2 1 2 2 2 1 2 2

* ** *
B , B ,A , A ,

* * * *

A , A , B , B ,

, , , , 1,2,3
m n m ni j i j

i j i j m n m n

k kk k
i j m n

k k k k

  
   
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           (A24) 

Hence, the abovementioned proposition is proved. □ 
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Figure 2. Problem domain under six-node triangular mesh 
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Figure 6. Several MEs and MPs near the crack surfaces 
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Figure 8. Decomposition of displacement field into mode-I and mode-II fields 

with respect to local crack-tip coordinate system 
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Figure 9. One crack-tip element and it’s ―stars‖ 
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Figure 10. Points A1 and B1 and their displacements near the crack-tip 
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(a)                                                        (b) 

Figure 12. (a) Asymmetrical configuration; (b) Symmetrical configuration (a = 0.1m) 
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(a)                              (b) 

Figure 11. (a) Finite plate with an edge crack under tension; (b) Mathematical cover with LMCR near crack-tip (a = 0.6m) 
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          Figure 13. REs of KI corresponding to the asymmetrical and symmetrical configurations 
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Figure 14. (a) Plate with a central crack under shear; (b) Mathematical cover (20LNs) with LMCR near crack-tip 
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Figure15. (a) Edge-cracked plate under mixed mode loading; (b) Mathematical cover (24LNs) with LMCR near crack-tip 
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Figure16. Curve of relative error of KI vs. DOF 
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Figure17. Curve of relative error of KII vs. DOF 
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(a)                            (b) 

Figure18. (a) Square plate with an inclined center crack under tension; (b) Mathematical cover (20LNs) with LMCR 

(β=75  ) 
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Figure19. Normalized KI and KII versus number of elements 
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Figure 20. KI and KII versus inclined angle β 
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Figure 21. KI and KII versus inclined angle β 
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Figure A1. Two elements and the triangle meshes covering them 
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Table I KI corresponding to different a (asymmetrical configuration) 

a(m) 
RV 

(N·m-1.5) 

Finite difference approximation Proposed analytic expression 

Scale CV Normalized KI RE(%) CV Normalized KI RE(%) 

0.1 0.663474  

0.001 0.644396  0.9712  -2.8755  

0.656965  0.9902  -0.9811  0.0001 0.644718  0.9717  -2.8269  

0.00001 0.644750  0.9718  -2.8221  

0.2 1.086478 

0.001 1.054031  0.9701  -2.9864  

1.074488  0.9890  -1.1036  0.0001 1.054592  0.9707  -2.9348  

0.00001 1.054648  0.9707  -2.9296  

0.3 1.611471 

0.001 1.569055  0.9737  -2.6321  

1.593274  0.9887  -1.1292  0.0001 1.569918  0.9742  -2.5785  

0.00001 1.570005  0.9743  -2.5732  

0.4 2.358024 

0.001 2.303960  0.9771  -2.2928  

2.333731  0.9897  -1.0302  0.0001 2.305262  0.9776  -2.2376  

0.00001 2.305392  0.9777  -2.2320  

0.5 3.542336 

0.001 3.441687  0.9716  -2.8413  

3.495218  0.9867  -1.3301  0.0001 3.443683  0.9722  -2.7850  

0.00001 3.443883  0.9722  -2.7793  

0.6 5.528026 

0.001 5.372146  0.9718  -2.8198  

5.429734  0.9822  -1.7781  0.0001 5.375352  0.9724  -2.7618  

0.00001 5.375673  0.9724  -2.7560  

         l = Scale × the minimum value of side length of all elements; CV: calculation value; RV: reference value; 

        RE: relative error = 100 × (CV-RV)/RV. 
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Table II KI corresponding to different a (symmetrical configuration) 

a(m) 
RV 

(N·m-1.5) 

Finite difference approximation Proposed analytic expression 

Scale CV Normalized KI RE(%) CV Normalized KI RE(%) 

0.1 0.663474 

0.001 0.649585  0.9791  -2.0935  

0.657980  0.9917  -0.8281  0.0001 0.649837  0.9794  -2.0555  

0.00001 0.649862  0.9795  -2.0517  

0.2 1.086478 

0.001 1.062999  0.9784  -2.1611  

1.078889 0.9930  -0.6985  0.0001 1.063439  0.9788  -2.1205  

0.00001 1.063483  0.9788  -2.1165  

0.3 1.611471 

0.001 1.582521  0.9820  -1.7965  

1.598515 0.9920 -0.8040  0.0001 1.583199  0.9825  -1.7544  

0.00001 1.583267  0.9825  -1.7502  

0.4 2.358024 

0.001 2.323594  0.9854  -1.4601  

2.345612 0.9947 -0.5264  0.0001 2.324617  0.9858  -1.4167  

0.00001 2.324720  0.9859  -1.4124  

0.5 3.542336 

0.001 3.470473  0.9797  -2.0287  

3.523378  0.9946  -0.5352  0.0001 3.472043  0.9802  -1.9844  

0.00001 3.472200  0.9802  -1.9799  

0.6 5.528026 

0.001 5.415535 0.9797  -2.0349  

5.493629  0.9938  -0.6222  0.0001 5.418057  0.9801  -1.9893  

0.00001 5.418309  0.9802  -1.9847  

        l = Scale × the minimum value of side length of all elements; CV: calculation value; RV: reference value; 

       RE: relative error = 100 × (CV-RV)/RV. 

 

 

 

 

Table III KII corresponding to different LNs 

LNs CV Normalized KII RE (%) Position 

16 
3.930172  0.9916345 -0.8365 Crack-tip A 

3.930092  0.9916143 -0.8385 Crack-tip B 

18 
3.933724  0.9925306 -0.7469 Crack-tip A 

3.933670  0.9925172 -0.7483 Crack-tip B 

20 
3.948841  0.9963448 -0.3655 Crack-tip A 

3.948728  0.9963163 -0.3683 Crack-tip B 

Reference value (RV): KII = 3.963327N·mm-1.5; CV: calculation value; RE: relative error = 100 × 

(CV-RV)/RV. 
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Table IV KI and KII corresponding to different LNs 

LNs/DOFs CV Normalized RE (%) SIFs 

12/1154 
32.557840 0.9576 -4.2416 KI 

4.237557 0.9313 -6.8668 KII 

14/1246 
32.923632 0.9683 -3.1657 KI 

4.368358 0.9601 -3.9921 KII 

16/1474 
33.153561 0.9752 -2.4895 KI 

4.422125 0.9719 -2.8104 KII 

18/1738 
33.285322 0.9790 -2.1019 KI 

4.459334 0.9801 -1.9926 KII 

20/2010 
33.443285 0.9836 -1.6373 KI 

4.479038 0.9844 -1.5596 KII 

22/2154 
33.510891 0.9856 -1.4385 KI 

4.494161 0.9877 -1.2272 KII 

24/2552 
33.611335  0.9886 -1.1431 KI 

4.501426 0.9893 -1.0675 KII 

28/3066 
33.755554 0.9928 -0.7189 KI 

4.516238 0.9925 -0.7420 KII 

30/3498 
33.860317 0.9958 -0.4108 KI 

4.522871 0.9940 -0.5962 KII 

32/3942 
33.897472 0.9969 -0.3015 KI 

4.530942 0.9958 -0.4188 KII 

Reference value (RV): KI = 34.00N·m-1.5 , KII = 4.55N·m-1.5; CV: calculation value;  

RE: relative error = 100 × (CV-RV)/RV. 

 

 

 

Table V KI and KII corresponding to the different elements (β = 60  ) 

Elements LNs 
KI KII 

CV Normalized RE(%) CV Normalized RE(%) 

652 16 0.434032 0.9795  -2.0494  0.746321  0.9724  -2.7588  

810 18 0.435915 0.9838  -1.6246  0.753380  0.9816  -1.8391  

1062 22 0.436415 0.9849  -1.5117  0.755002  0.9837  -1.6278  

1236 24 0.436863 0.9859  -1.4106  0.757787  0.9874  -1.2649  

1512 28 0.438738 0.9901  -0.9874  0.759152  0.9891  -1.0871  

1782 30 0.441334 0.9960  -0.4017  0.761187  0.9918  -0.8219  

Reference value (RV): KI = 0.443113N·m-1.5, KII = 0.767495N·m-1.5; CV: calculation value;  

RE: relative error = 100 × (CV-RV)/RV. 

 


