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SUMMARY 

The partition of unity based methods, such as the extended finite element method (XFEM) 

or the numerical manifold method (NMM), are able to construct global functions that 

accurately reflex local behaviors through introducing locally defined basis functions beyond 

polynomials. In the dynamic analysis of cracked bodies using an explicit time integration 

algorithm, as a result, huge difficulties arise in deriving lumped mass matrices due to the 

presence of those physically meaningless degrees of freedom associated with those locally 

defined functions. Observing no spatial derivatives of trial or test functions exist in the 

virtual work of inertia force, we approximate the virtual work of inertia force in a coarser 

manner than the virtual work of stresses, where we inversely utilize the “from local to 

global” skill. The proposed lumped mass matrix is strictly diagonal and can yield the results 

in agreement with the consistent mass matrix, but has more excellent dynamic property than 

the latter. Meanwhile, the critical time step of NMM equipped with an explicit time 

integration scheme and the proposed mass lumping scheme does not decrease even if the 

crack in study approaches the mesh nodes – a very excellent dynamic property. 

                                                        

Correspondence to: Hong Zheng, State Key Laboratory of Geomechanics and Geotechnical Engineering, 

Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China. 
*
E-mail: hzheng@whrsm.ac.cn  

mailto:hzheng@whrsm.ac.cn


 

 

This article is protected by copyright. All rights reserved. 

KEY WORDS: lumped mass matrices; explicit time integration; dynamic crack problems; 

critical time step; numerical manifold method 

1. INTRODUCTION 

The modeling of complex structures in dynamic application is still full of challenges and 

difficulties. In order to simulate accurately the physical phenomenon involved in dynamic 

applications such as crash, impact, earthquake and explosion, a very small time step is needed 

[1]. If implicit time integration algorithms are used, the computational consumption for these 

simulations with large meshes of complex non-linear structures can become problematic. 

Therefore, the explicit time integration algorithms becomes popular in dynamic analyses as 

numerical iterations are not needed at each time step, and also good properties might be 

obtained in term of accuracy and robustness with possible nonlinearities [2]. Although the 

explicit time integration algorithm is conditionally stable which requires rather small time 

steps compared to implicit time integration algorithms, if a lumped mass matrix is adopted 

instead of the consistent mass matrix, the computational consumption can be reduced 

significantly as inversing matrices can be avoided in solving the large-scale simultaneous 

algebraic equations. Therefore, in the dynamic analysis, a lumped mass matrix with excellent 

numerical properties is always preferable. 

The extended finite element method (XFEM) [4, 5], which is considered as an 

improvement of FEM, was developed to mitigate the burden of meshing and remeshing in 

modeling crack problems using FEM [3]. XFEM is based on the partition of unity method 

(PUM) [6], where the representation of a strong or weak discontinuity is achieved via 

enrichment of the shape functions [7]. The concept of discontinuity enrichment was also used 

in the element free Galerkin (EFG) method [8-10] which has been successfully used to solve 

static and dynamic problems [11-13]. So far, XFEM has been successfully used to solve 

many complex problems such as holes and inclusions [14], two- and three- dimensional static 
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crack propagation problems [4, 5, 15-17] and dynamic crack propagation problems [18]. 

As stated previously, mass lumping in dynamic analysis can avoid solving the large-scale 

simultaneous algebraic equations. However, as discussed in [7], if XFEM is applied to 

simulate dynamic crack propagation problems, those degrees of freedom associated with 

enriched shape functions will cause some irregularities in the mass matrix. 

Belytschko et al. [18] were the first to point out the critical time step can be very small for 

XFEM if very small fractions of elements are traversed by a crack. They even pointed out 

that the critical time step tends to zero as the crack approaches the element nodes, and 

therefore adopted the implicit-explicit time integration scheme proposed by Hughes and Liu 

[19]. de Borst et al. [20] also experienced the critical time step problem with discontinuous 

enrichment. In order to avoid such a situation, they proposed to prevent the crack from 

crossing an element within a preset distance to a node of the element, compromising the exact 

orientation of a new crack segment. In addition, Rabczuk et al. [21] proposed to split the 

particles on both sides of a crack to reflect the displacement skip, which accordingly avoids 

the introduction of enrichment functions reflecting displacement skip across the crack. 

Menouillard et al. [22, 23] have successfully addressed this problem by proposing 

appropriate mass lumping strategies for enrichment that produce non-zero critical time steps 

for dynamic crack propagation problems. However, the mass lumping strategies proposed by 

them are only suitable for discontinuous enrichment. Without the singularity tip enrichment, 

the crack tip is usually located on the element boundary and accurately locating the crack tip 

would be very difficult. To resolve this issue, Elguedj et al. [1] further developed a mass 

lumping scheme for dynamic crack problems with crack-tip enrichment by assuming that all 

the enriched nodes in an element have equal enriched masses. In their scheme, the kinetic 

energy of the rigid body modes and the enrichment modes can be preserved. The application 

of Elguedj’s scheme in explicit enriched meshfree method can be found in [7]. Furthermore, 
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based on a transparent variational approach, a consistent mathematical technique for 

computing the lumped mass matrix for the partition of unity method is proposed by 

Schweitzer [24], and applied by Piedade Neto and Baroncini Proenca [25] to solve linear and 

nonlinear structural dynamic problems in the framework of generalized finite element 

(GFEM). Schweitzer’s approach is applicable to any PUM which adopts a nonnegative 

partition of unity (PU). In Schweitzer’s approach, the consistent mass matrix is converted into 

a symmetric positive definite block-diagonal matrix rather than a strict diagonal matrix. As a 

result, solving a system of simultaneous equations with such a block-diagonal matrix as the 

coefficient matrix will need at least O(n
3
) operations. 

In 1991, Shi [26] invented the numerical manifold method (NMM), which also falls into 

the category of the partition of unity. One of the salient advantages of NMM, in our 

viewpoint, is its ability to solve continuous and discontinuous problems in a unified way 

because it combines continuum-based FEM and discontinuum-based DDA, an abbreviated 

word for Discontinuous Deformation Analysis (DDA) [27, 28]. In order to achieve this goal, 

NMM adopts two cover systems, namely, the mathematical cover and the physical cover. The 

mathematical cover is utilized to define the partition of unity functions. The physical cover, 

generated by cutting the mathematical cover with the problem domain, is used to define the 

local approximations and to integrate the weak form of the problem. In this way, NMM can 

solve crack propagation problems in a natural way without recourse to any other enrichment 

functions such as the Heaviside function. Up to now, NMM has been successfully used to 

model various problems, including static crack problems [29-33], dynamic crack problems 

[34], Kirchhoff’s thin plate bending problems [35], and seepage problems [36-38]. 

In the original NMM [26], the implicit time integration schemes are used to solve the 

dynamic problems, where the consistent mass matrix is used. To improve computational 

efficiency, a mass lumping scheme is proposed in this study. The lumped mass matrix by this 
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procedure can be combined with the explicit time integration algorithm [39] and applied to 

dynamic problems in [40]. 

In this study, a procedure for mass lumping is proposed in the context of NMM, which can 

produce a strict diagonal matrix. Nevertheless, the procedure is suitable to any partition of 

unity based method. The critical time steps corresponding to the consistent mass matrices and 

the proposed lumped mass matrices are compared, indicating that the critical time steps 

corresponding to the proposed lumped mass matrices are much larger than that to the 

consistent mass matrix, a very excellent property that XFEM does not have. Accuracy of the 

proposed mass lumping scheme is investigated by means of solving stationary dynamic crack 

problems, suggesting the proposed lumped mass matrix can yield results quite agreeable with 

the consistent mass matrix even if an implicit time integration scheme is adopted. 

2. NMM FOR ELASTODYNAMIC PROBLEMS 

In this section, the problem definition is formulated, followed by a brief description of NMM. 

Although the mass lumping scheme to be expounded is implemented in the context of NMM, 

it is suitable for any partition of unity based methods. 

2.1 Governing equations in strong form 

Considering a 2D homogeneous, isotropic and linear elastic problem defined on domain   

with the boundary              , as shown in Fig. 1. Here,    is the displacement 

boundary;    the traction boundary; and    the crack surface, defined by         
 –; 

with     and  
 – the upper and lower crack surfaces respectively. In terms of displacements 

as primal variables, the governing equations and the boundary conditions for this problem are 

as follows: 

(1) the equations of momentum conservation 

       
   

   
, in                                                  ( ) 
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where   is the Cauchy stress vector, b the body force per unit volume, u the displacement 

vector,   the mass density and   the time;   is the matrix of differential operators 

   

 
 
 
 
 
 

  
 

 

  

 
 

  

 

   
 
 
 
 

,                                                ( ) 

(2) the constitutive equation 

    , in                                                         ( ) 

where D is the elasticity matrix, and   the strain vector related to the displacement vector by 

    , in                                                        ( ) 

(3) the boundary conditions 

                                                              ( . ) 

                                                             ( . ) 

                                                             ( . ) 

where n is the unit outward normal vector to   ,    and    are the prescribed traction vector 

on    and displacement vector on   , respectively. 

(4) and the initial conditions 

            , in                                                ( . ) 

              , in                                               ( . ) 

where       and        are the initial displacement and velocity fields, respectively. 

2.2 Fundamentals of NMM 

In this section, the basic concepts of the numerical manifold method (NMM) are briefly 

introduced, more details about NMM can be found in [41]. NMM involves three important 

concepts, i.e., the mathematical cover, the physical cover and the manifold elements. 

The mathematical cover consists of a set of user-defined overlapping patches,   
 , 

        . Each patch,   
 , is a simply connected domain named as mathematical patch, 
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and    the number of mathematical patches. The mathematical cover is independent of, but 

must cover the whole problem domain  . 

The physical cover consists of all the physical patches, and the physical patches are 

obtained by cutting the mathematical patches with the components of the problem domain. 

Here, the components of the problem domain include the domain boundaries, the material 

interfaces and the discontinuities. When a mathematical patch   
  is divided into several 

disjointed domains, only those inside the problem domain form the physical patches and 

those outside the problem domain are discarded. A mathematical patch   
  might be divided 

into more than one physical patch     
 

,         
 
. Here     

 
 is called the j-th physical 

patch generated from the ith mathematical patch   
 .   

 
 is the number of all the physical 

patches that are generated from the same mathematical patch   
 . As a result, the cutting 

operations make the physical patches exactly cover and match the problem domain  . 

Further, a manifold element is defined as the common region of several physical patches. 

All the manifold elements constitute a mesh of the problem domain and match the problem 

domain exactly. The manifold elements are the basic units for integrating the weak form of 

the problem. 

To explain the above mentioned concepts, the example present in Fig. 2 is used. The 

regular triangular mesh is used to form the mathematical cover, and the thick red lines define 

problem domain  . The regular mesh used here is called the mathematical mesh. The 

mathematical mesh does not have to match the boundary or crack, but must cover the 

problem domain  . A circular red dot represents the center of the corresponding 

mathematical patch, which is a hexagon marked by yellow edges. Cutting mathematical patch 

  
  with   yields two physical patches, namely,     

 
 and     

 
. Cutting   

  with  , 

only the fraction inside   forms the physical patch, namely,     
 

, and the rest part of   
  

is discarded. Since all   
  is totally inside the problem domain,   

  is not cut off at all, and 



 

 

This article is protected by copyright. All rights reserved. 

only one physical patch     
 

 is generated, which coincides with   
 . All the physical 

patches generated from the mathematical patches constitute the physical cover, or the 

physical mesh in this particular case. 

It should be pointed out that each physical patch, say     
 

, corresponds to one and only 

one NMM node, denoted by     
 

. Similar to FEM, the degrees of freedom over a physical 

patch are attached at the NMM node of the physical patch. But an NMM node has two types, 

namely, a real node and a phantom node. A real node is within the domain of the physical 

patch, such as     
 

, while a phantom node is outside the domain of the physical patch, such 

as     
 

. The concept of phantom nodes can also be found in [42].  

Under the small deformation and small rotation assumption, all the physical patches 

generated from the same mathematical patch have their own NMM nodes that are all at the 

center of the mathematical patch. As can be seen in Fig. 3(a), both     
 

 and     
 

 coincide 

with the center of   
 . If large movement is involved, however, all the NMM nodes will 

move with their physical patches. As a result, only at the outset do     
 

 and     
 

 

coincide; later on, they might separate because the crack runs through the problem domain 

(Fig. 3(b)). More details can be found in [43]. In the rest of this study, the ‘‘NMM node’’ will 

also be termed as ‘‘node’’ for simplicity in presentation. Meanwhile, once the physical cover 

is formed, the mathematical cover will not be employed in the next time step. Subsequently, 

patches are actually referring to physical patches. 

In this study, two types of patches, e.g. nonsingular patches and singular patches are 

considered. The nonsingular patches do not contain any crack tips, like     
 

 and     
 

, 

while the singular patches contain at least one crack tip, like     
 

, as shown in Fig. 2. 

The common region of neighboring physical patches will produce a manifold element. For 

example,     
 

,     
 

 and     
 

 produce the manifold element, 
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, 

which is a perfect equilateral triangle, while      
 

,     
 

 and     
 

 produce the manifold 

element, 

       
      

      
 

, 

which is an incomplete triangle.    and    are the green area shown in Fig. 2. 

Over each mathematical patch (  
 ), a weight function      , will be defined, which 

satisfies 

       , if     
 ; (7.1) 

         , if     
 ; (7.2) 

         , if      (7.3) 

The weight function,       associated with   
  will be accordingly transferred to physical 

patches,     
 

,         
 
, and denoted as        ,         

 
.        ,         

 
, 

may have the same expression as      , but they have totally different domains of definition. 

Besides, over each     
 

, different local approximation functions will be defined. This 

enables NMM to simulate discontinuity across a crack without recourse to the Heaviside 

function. 

For convenience, all the physical patches     
 

 and weight functions         are coded 

with a single subscript and denoted as   
 
 and      , respectively. Here,    is the number 

of all the physical patches or the nodes, equal to 

      
 

 

                                                           ( ) 

Over each   
 
, the local displacement vector   

     can be defined, which reflects the 

asymptotic behavior of solution over the patch. Thanks to the partition of unity of the weight 

functions        , the local approximation   
     over   

 
 can take any expressions but no 
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variational crime is committed [43]. To avoid unnecessary distractions, nevertheless, this 

study takes a constant vector as the local displacement vector over nonsingular patch   
 
, 

resulting in 

  
       .                                                      ( ) 

Such a selection avoids linear dependence problem [41]. Here,    represents the 

translational displacement vector of NMM node   
 
. 

If, however, patch   
 
 contains a crack tip, we can enrich the displacement approximation 

over   
 
 by adding some particular functions that reflect the local behavior of solution 

around the crack tip, such as, 

  
               ,                                          (  ) 

with 

                  ,        (11) 

   is the 8-dimensioanl vector consisting of eight enrichment degrees of freedom 

  
     

      
  ,       (12) 

        is the 28 matrix with four enrichment functions or local basis functions 

                           ,        (13) 

where     is the 22 identity matrix,         and         are from the first two items of 

Williams' displacement series, defined by 

             
    

 
 ,              

    

 
 ,      (14) 

with   = 1 and 2. Here,       is the polar coordinate with the origin at the crack tip, the 

crack extension line as the polar axis, and       . 

Equations (9) and (10) can be written in the unified form 

  
            ,      

 
,      (15) 
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with the vector 

     , for nonsingular   
 
,      (16.1) 

or 

    
  

  
 , for singular   

 
 ,      (16.2) 

and the matrix 

     , for nonsingular   
 
 ,      (16.3) 

or 

          , for singular   
 
,      (16.4) 

which is discontinuous across the crack. 

As a result, associated with a physical patch   
 
 is the triple    

    
     , reflecting the 

local region, the local approximation and the proportion of the local approximation to the 

global approximation, respectively. 

By adding up the weighted approximations,     
 , over all the    physical patches, we 

obtain the global approximation to the displacement vector over   

              
     ,     .     (17) 

To this point, it is clear that the two major differences exist between FEM and NMM. First, 

if a finite element mesh is rendered to match the problem domain  , namely let the 

mathematical mesh coincide with the physical mesh, and let all the local functions over the 

relevant patches be taken as unknown constants, then NMM reduces to FEM. And second, 

even if the mathematical mesh coincides exactly with the physical mesh, functions      in 

FEM are regarded as the shape functions and accordingly compose the so called FEM space 

with      as the basis, in which a function, actually an approximation to the solution, can 

only be expressed as a linear combination of these basis functions     . While the same 

functions      are viewed in NMM as the weight functions; and an NMM approximation is 
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expressed as the sum of all the local functions multiplied by the weight functions over the 

corresponding patches. All functions created in this way constitute the NMM space, a proper 

subspace of the space of admissible functions of solution such as       for second order 

problems. 

Of course, covers of other types are allowed in NMM, such as the cover consisting of the 

supports of shape functions in the moving least squares technique, see [32, 38, 43] for 

example. 

Substituting equation (15) into equation (17) results in 

           ,     .       (18) 

Here,   is the vector consisting of degrees of freedom of all the physical patches, and      

is the shape matrix defined by 

               .       (19) 

     is discontinuous across any discontinuity, weak or strong;       is the shape function 

matrix of the jth physical patch 

                ,       (20) 

which vanishes outside   
 
. 

It is mentioned that although the weight functions         satisfy the partition of unity 

(PU) property, in general         do not have the PU property in those regions near the 

crack tips due to the introduction of the enrichment functions. 

In addition, we mention that if an equally distributed error field is sought, the adaptive 

analysis can be conducted. In this situation, multilayer covers can be deployed to wherever 

high gradient of stress exists, which has been thoroughly expounded in [31]. 
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2.3 Weak-form and discrete version 

The discrete equations of NMM for the initial-boundary value problem of equations (1-6) are 

generated from the weak form and expressed as 

       
 

         
 

      
 

        
  

,                    (  ) 

where   is related to   by equation (4), and    is virtual displacement vector. Equation 

(21) is equivalent to equations (1), (5.2) and (5.3). Here, the first item is the virtual work of 

inertia force and will be approximated in the next section. The second item is known as the 

virtual work of stress. 

Throughout this study, the convention of integral notation in differential topology, see [44] 

for example, is followed, where the differential elements, such as the differential area    

and the differential arc-length    in equation (21), are totally omitted. There are two major 

reasons for this: firstly from the subscripts of the integral sign we immediately recognize 

whether the integration is over a domain or a curve; and secondly length of the equation can 

be shorten. On the basis of the analysis on manifolds, in addition, NMM should follow the 

conventions of the subject as far as possible. 

By direct substituting the displacement function of equation (18) into equation (21), a 

system of the algebraic equations can be obtained as follows: 

        ,                                                  (  ) 

where   is the vector consisting of degrees of freedom of all the physical patches,     is the 

second time derivative of   or the acceleration vector.  ,   and   are the global mass 

matrix, global nodal force vector and global stiffness matrix, respectively, and defined as 

       
 

,                                                  (  ) 

       
 

,                                                 (  ) 
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,                                            (  ) 

with     , and the definition of operator   is defined in equation (2). The mass matrix 

  given in equation (23) is known as the consistent mass matrix, with the same sparsity 

structure as  . By “consistent”, it is meant that the approximation to the integrand of the 

virtual work of inertia force is conducted in the same way as the approximation to the virtual 

work of internal force. 

Due to the introduction of enrichment degrees of freedom, the component functions of 

matrix   in equation (23) do not have in general the PU property in those regions near the 

crack tips; as a result, the mass matrix   in equation (23) cannot be expected to satisfy the 

mass conservations, because Liu [45] have proved that the PU property is necessary and 

sufficient for the mass conservation, which says that the summation of all the elements of   

corresponding to x- or y-direction, keeps conservative. 

As an aside, in order to minimize the dispersion error in the finite element analysis of 

acoustic problems, He et al proposed a mass-redistributed FEM [46, 47], where new 

quadrature points are selected to replace the Gauss points in the numerical integration of the 

mass matrix   in equation (23). This technique is prospectively applied to the finite element 

analysis for elasticity. 

2.4 The time integration algorithm 

Suppose that the state at the time step n is known; in other words, the degrees of freedom 

vector   , its speed    , and accelerator     are all given. By using the Newmark time 

integration, the vector   and its speed vector    at the (n + 1) time step, denoted by      

and       respectively, can be calculated 

              
   

 
                   ,    (26) 

                                     (27) 
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in terms of vector      . 

Solving system (22) at the time step n + 1 for       and using equation (26), we have 

          ,         (28) 

with 

     
 

 
      ,         (28.1) 

and 

                   
 

 
             .   (28.2) 

Here, both    and    are user-specified parameters, falling in the integral [0, 1]. The 

scheme corresponding to    
 

 
 gives rise to unconditionally stable implicit schemes, at the 

cost of the inverse of    in solving system (28).  

The practice corresponding to   = 0 is known as the explicit time integration scheme. But 

this is a conditionally stable process in which the time step length    must be small enough. 

If, however, the mass matrix   is diagonal, solving system (28) becomes a very easy task, 

and the dynamic process can be thus speeded up significantly. 

2.5 Interaction integral and dynamic stress intensity factors 

In the dynamic crack analysis, the dynamic stress intensity factor (DSIF) characterizes the 

singularity strength of the stress distribution around the crack tip, and plays a very important 

role in the failure analysis [48]. To obtain the DSIFs, the domain form of interaction integrals 

is employed in this study. Two states of the cracked body are considered. State 

1    
          

         
        corresponds to the actual state while state 2    

     
    

     
   

     
  

is an auxiliary state which is chosen as the asymptotic fields for modes I and II. The 

Interaction integral with the mixed-mode DSIFs can be obtained by [49]  
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+ 

     
        

      

   

  

   
   

    
      

   

   
     

   
     

  

 

(29) 

in which             is the interaction strain energy defined as 

               
      

   
     

    
     

   
      

 (30) 

   is the area-path determined by a circle with radius R shown in Fig. 4. R is called 

interaction integral domain radius and defined as 

     ,                                                     (  ) 

in which h is the maximum circumradius of a mathematical patch,    is a factor which can 

determine the size of the circle.      is a bounded weighting function, which is 

schematically represented in Fig. 4, the value of which is 1 within the circle and 0 outside the 

circle. 

Alternatively, for a general mixed-mode crack the relationship between the J-integral and 

the dynamic stress intensity factors is given by 

            
 

     
   

  
       

   
   

       (32) 

in which 

    
                       

 

    
              

   

  
    and    

    are the DSIFs corresponding to the auxiliary state. The DSIFs for the 

current state can be determined by selecting the State 2 appropriately [49]. 
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3. MASS LUMPING AND CRITICAL TIME STEPS 

In this section, we first present the scheme of mass lumping. Then, we will demonstrate the 

lumped mass matrix proposed by the lumping scheme has a more excellent dynamic property 

than the consistent mass matrix because the former has a larger critical time step for the same 

mesh. 

3.1 Mass lumping 

As stated previously, only if the mass matrix   is diagonal, the explicit time scheme 

becomes meaningful. In this section, the mass lumping scheme is proposed in the framework 

of NMM. To this end, let’s write separately out the virtual work of the inertia force as follows 

             
 

.                                                   (  ) 

Due to the partition of unity of the weight functions     ,     can be multiplied with the 

integrand of    , leading to 

                

  

             
  

                  (  . ) 

Compactness of the support of each      , namely,         for     
 
, reduces     

to 

                
 

 
 

 

                                      (  . ) 

The above procedure actually comes from the definition of integral of a scalar function 

over a compact manifold [44]. Here, the manifold reduces to the problem domain   in the 

2-dimentional Euclidean space, and the scalar function is the integrand           . 

From the perspective of calculus of variations, the calculation of     does not have to 

demand    or    belonging to       like the calculation of   in equation (24). Instead, 

it is enough for    and    in     to belong to      . Further, if   
 
 is small enough, 
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both    and    in   
 
 can be replaced approximately by their local values on   

 
 itself, 

   
  and    

 , respectively, with no variational crime committed. As a result, 

        
 

 

,                                                   (  ) 

with 

   
          

      
 

 
 
 

                                         (  ) 

Here, we have to admit that we actually utilize inversely the skill of “from local to global” in 

differential topology. 

Using equation (15), 

   
        ,        (36) 

and 

   
        ,        (37) 

and substituting equations (36) and (37) into equation (35), we have the virtual work of   
 
 

   
       

   
    ,        (38) 

with   
  being the mass matrix of patch   

 
, 

  
        

   
 

 
 

                                                (  ) 

which is a positive and definite matrix, and will be termed the first lumping scheme. 

If   
 
 is an ordinary patch,       according to equation (16.3), then   

  is a 2  2 

diagonal matrix defined by 

  
      ,                                                       (  ) 

with 

       
 

 
 

.                                               (  . ) 



 

 

This article is protected by copyright. All rights reserved. 

If   
 
 is a singular patch, then,            according to equation (16.4). 

Since        ,     
 
,   

  can also be approximated as follows 

  
  

 

  
    

   
 

 
 

                                               (  ) 

with   
 

 = area of   
 

. Equation (41) is actually derived from further smoothing the 

integrand (39), and will be called the second lumping scheme in the subsequent. Both the two 

lumping schemes has little difference. 

To this point, the lumped global mass matrix   is derived by integrating patch-by-patch 

rather than element-by-element as in any other numerical methods.   has only the diagonal 

block   
  corresponding to patch   

 
 and all the off-diagonal blocks are nil blocks. 

For a singular patch   
 
, however,   

  defined in either equation (39) or equation (41) is a 

10  10 matrix with off-diagonal items. Fortunately, it is positive and definite, and can be 

easily diagonalized as 

  
        

 ,                                                    (  ) 

according to the spectral decomposition theorem; where    is a 10  10 diagonal matrix 

with all the diagonal items being positive, namely, the eigenvalues of   
 ; and    is a 10  

10 orthogonal matrix, i.e.,   
     

 . 

If the diagonal block    rather than   
  are at the diagonal of   for the singular 

patch-i, then the i-th sub-matrix column      of the global stiffness matrix   is 

post-multiplied by   , namely, 

               

followed by pre-multiplication of the i-th sub-matrix row      by   
 , namely, 

         
      

Here, “ ” represents “is replaced by”. After these operations are carried out, the global 
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stiffness matrix   still keeps symmetric and positive definite. Correspondingly, the 

load vector   in equation (25) should be adjusted to its i-th sub-vector    by 

       
     

From the solution of the NMM system, as a result, what we will obtain are actually 

  
    

   ,                                                      (  ) 

attached to the singular patch   
 
. Since    is orthogonal, once the NMM system is solved, 

we can immediately have    by 

       
 .         (44) 

Clearly, the above derivation of the lumped mass matrix   does not introduce any 

assumptions as in [7], where the first lumping strategy is based on the assumption that all the 

nodes influencing an integration cell have the same proportional quality of the integration 

cell; and the second lumping strategy is based on the physical intuition that the lumped mass 

matrix preserves the kinetic energy of the body corresponding to a particular translational 

movement. 

It is mentioned that due to the introduction of enhancement functions the shape functions 

loss the PU property, concluding that the mass conservation does not hold in either x- or 

y-direction. However, the mass matrix   proposed in the above procedure still keeps mass 

conservative for those items representing translational components. 

In the conventional finite element analysis where no enhancement function is introduced, 

the mass conservation is an intuitive “law” that is followed while deriving the lumped mass 

matrix. It’s still an open issue, from our viewpoint, whether the mass conservation should be 

kept if the enhancement functions are introduced. The goal of this study is to gain a better 

lumped mass matrix than the consistent one defined in equation (23) in both accuracy and 

dynamic properties. 
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3.2 Critical time step analysis 

The explicit time integration scheme, as is well known, is conditionally stable, implying the 

time step    should be chosen in accordance with the Courant-Freidrich-Lewy condition [1] 

       
 

    
,                                               (  ) 

where     is the critical time step, and      is the maximum eigenfrequency determined 

by the generalized eigenvalue problem [7] 

                                                                    

In practice, we refer to an explicit time integration scheme with a greater critical time step 

    as better dynamic property. 

In the following, for the same stiffness matrix   we will compare the critical time steps 

corresponding to the proposed lumped mass matrix, denoted by      , and the consistent 

mass matrix, represented by         . 

To this end, the 5  5 mesh and the 10  10 mesh are designed with and without cracks, 

and with different crack tip positions, being considered, as shown in Figs. 5 and 6, 

respectively. 

First, we calculate the critical time steps correspond to          and       with the two 

meshes containing no crack (Fig. 5(a) and Fig. 6(a)), and list the results in Table 1. Since no 

singular patch exists,       corresponding to equation (39) is the same as that to equation 

(41). Two conclusions can be drawn: 

(1) For a given problem domain, if it is discretized with a finer mesh, the critical time step 

will become smaller. This will be used in the following discussion. 

(2) And the critical time steps corresponding to      ,       ’s are much larger than 

those to         ,       ’s. The similar conclusions were also drawn in [50]. 

Second, let a crack cut through the problem domain, with the crack varying vertically, as 
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shown in Fig. 5(b) and Fig. 6(b). 

Third, let a crack partially cut the problem domain, with the crack varying vertically, as 

shown in Fig. 5(c) and Fig. 6(c). 

Last, let a crack partially cut the problem domain, with the crack tip varying horizontally, 

as shown in Fig. 5(d) and Fig. 6(d). 

The critical time steps corresponding to the above crack deployments are shown in Fig. 7 

and Fig. 8. For convenience of observation, the results in Fig. 7 are normalized with        

of mesh 5×5; while the results in Fig. 8 are normalized with        of mesh 10×10. Since 

the results of Fig. 7 and Fig. 8 have the similar trend, we only discuss the results presented in 

Fig. 7. Some conclusions can be drawn from Fig. 7: 

(1) For the first crack deployment scheme (Fig. 5(b)), namely, the crack cutting through the 

problem domain,         and         are completely identical, which are both much 

larger than          , as shown in Fig. 7(a). The values of         and         depend on 

the crack position.         (assessed by the first lumping scheme, equation (39)) and 

        (evaluated by the second lumping scheme, equation (41)) reach the maximum when 

the crack is directly cross the nodes, namely, the relative crack position is equal to zero or one. 

This is a very good property of NMM of which XFEM is not in possession [18]. Although 

        and         have a drop when the crack get away from the nodes,         and 

        will increase as the crack gets close to the middle of the mesh. 

(2) For the second crack deployment scheme (Fig. 5(c)), namely, the crack partially cutting 

the problem domain and varying vertically,         is a little larger than        , and both 

are much larger than          , as shown in Fig. 7(b). 

(3) For the third crack deployment scheme (Fig. 5(d)), namely, the crack tip moving 

horizontally,         is generally larger than        , and both are much larger than 

         , as shown in Fig. 7(c).        ,         and           are still quite large even 
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while the crack tip approaches the element boundary. 

In all the cases, the critical time step corresponding to       is much larger than that to 

        , suggesting that the proposed lumped mass matrix has more excellent dynamic 

property. As for the critical time step corresponding to equation (39) or equation (41), no 

essential difference exists, but the critical time step corresponding to equation (41),         

is slightly larger than that to equation (39),        . For example, in Fig. 7, min(       ) = 

0.19, and min(       ) =0.20. 

4. NUMERICAL EXAMPLES 

In this section, to investigate accuracy of the proposed mass lumping scheme, two numerical 

examples of stationary cracks under dynamic load are considered, and the results are 

compared with the analytical solution. 

Meanwhile, as a demonstration of the effect of the proposed mass lumping scheme, the 

dynamic response of a laminated cantilever is analyzed under the action of a transient load. 

4.1 Stationary mode-I semi-infinite crack 

An infinite plate with a semi-infinite mode-I crack loaded by a step tensile load (Fig. 9), is 

considered, with the plane strain condition assumed. The analytical solution for mode-I DSIF 

is given by Freund [48], which is thus used here for the validation purpose. 

We design the finite geometry as in Fig. 10. The parameters are taken as follows: height 2H = 

4 m, length L = 10 m, crack length a = 5 m, Young’s modulus E = 210 GP, Poisson’s ratio v = 

0.3, density   = 8000 kg/m
3
, step load    = 500 MPa. 

Since the analytical solution for this problem is obtained under the assumption of plate and 

crack infiniteness, numerical results are only compared with the analytical solution until the 

tensile stress wave is reflected on the bottom side and reaches again the crack tip [1]. The 

time needed by the stress wave to reach the crack-tip for the first time is         [49], 

where    is the dilatational wave speed. Therefore, the valid time for the simulation is 
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                        . The total computation time for this problem will be set 

as 0.001s in this study. 

The analytical solution of the mode-I DSIF for a stationary crack for this problem is 

available and can be found in [51] 

  
   

   

      

   

   
 

              

 
     

  (47) 

where    = 5944 m/s. 

For the convenience of comparison, the DSIF in this example will be normalized by 

  
   

   
    , while time t by     . 

The discretized models for this problem are shown in Fig. 11. 

4.1.1 Validation of the mass lumping scheme 

Before the discussion, we validate the proposed lumping scheme using the implicit time 

integration scheme with constants   =  =1. Two time steps are set, namely,          

and          . The discretized model shown in Fig. 11(c) is used for this test. Shown in 

Fig. 12 are the results obtained by IMP + Consist, IMP + Lump1 and IMP + Lump2. Here, 

“IMP” = implicit  Lump  and Lump  represents the mass matrix corresponding to equation 

(39) and equation (41), respectively.  

As can be seen in Fig. 12, the results of IMP + Lump1 and IMP + Lump2 are both quite 

agreeable with IMP + Consist, suggesting the lumped mass matrices proposed by the mass 

lumping scheme are quite accurate even for quite large time steps. 

4.1.2 Influence of interaction integration domain size on accuracy of DSIF 

Theoretically, the value of interaction integral should be path independent. However, due to 

the error in numerical integration, the value of interaction integral is somewhat path 

dependent. Therefore, the value of R, defined in equation (31), will influence accuracy of the 
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calculated DSIFs by numerical methods, and an optimum R is of great importance in the 

crack analysis. 

To obtain the optimum value of R, several different    (equation (31)) from 0.3 to 1.6 for 

the computation of the interaction integral as described in Section 2.5 are considered. The 

discretized model shown in Fig. 11(c) is used for this test and time step    is set as  μs.  

In this section, the explicit integration algorithm using the two lumped mass matrices, 

namely EXP + Lump  and EXP + Lump , are conducted. Here, “EXP” = explicit. Shown in 

Fig. 13 are errors of DSIF corresponding to different interaction integration domain-sizes. 

As shown in Fig. 13, the errors of DSIF firstly increase and then decrease over time. When 

    , the errors reach the maximum value for both EXP + Lump1 and EXP + Lump2 with 

different   . According to the results of Fig. 13, obviously, a value for    is recommended 

in        . In the following section,    will be set as 1.0. It should be noticed that the 

value of optimum    in dynamic crack problems is different from that in static crack 

problems. Using the implicit time integration scheme in [49], Liu et al. also obtained the 

optimum value of    in dynamic stationary crack problem for singular edge-based 

smoothed finite element method, and draw similar conclusions to this study.  

4.1.3 Convergence of DSIFs versus discretized models 

To study the convergence of EXP + Lump1 and EXP + Lump2 in terms of mesh density, 

three discretized models with 62, 199 and 378 physical patches (PPs) are considered, as 

shown in Fig. 11. The time step    is set as  μs. The normalized mode-I DSIFs as a function 

of the normalized time computed by the EXP + Lump1 and EXP + Lump2 are evaluated for 

each discretized models individually, and the results are then compared with the analytical 

solution. Fig. 14 presents the convergence of the normalized mode-I DSIFs for the three 

considered models. As shown in Fig. 14, the normalized values of DSIFs achieved by EXP + 

Lump1 and EXP + Lump2 converge well to the exact solution as the mesh gets finer. 
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From Fig. 14, meanwhile it is observed that as the mesh is refined the solution exhibits 

some oscillations although it, as a whole, approaches to the analytical solution. The 

phenomenon is caused by the fact that if the explicit time scheme is applied, then the denser 

the mesh is, the smaller the critical time step becomes, as is pointed out in section 3.2. This 

suggests that not only the mesh but also the time should be refined simultaneously in order to 

reach a stably convergent solution. While for the three meshes of different density, one fixed 

time step,  μs, is preset, which is very likely to exceed the critical time step associated with 

the denser mesh. For example, the critical time step of the mesh of 378 patches is about 

1.36μs under the condition that the constrained boundary condition is enforced with a penalty 

of 100E. Besides, the boundary constraint due to the finite model is likely to influence stable 

convergence of solution. If so, the nonreflecting boundary should be applied to the finite 

model, which is another big topic. 

In addition, the results of EXP + Lump1 and EXP + Lump2 are also drawn in the same 

figure for all the three discretized models, as shown in Fig. 15, for convenience of 

comparison. As can be seen in Fig. 15, results of EXP + Lump2 are in agreement with those 

of EXP + Lump1. 

4.1.4 Influence of time step on accuracy of DSIFs 

To study the influence of time step on accuracy of EXP + Lump1 and EXP + Lump2, three 

time steps with    =  ,   and  .  μs are considered and the discretized model shown in Fig. 

11(c) is used. The normalized mode-I DSIFs as a function of the normalized time computed 

by EXP + Lump1 and EXP + Lump2 are evaluated for each time step individually, and the 

results are then compared with the theoretical reference solution. Fig. 16 presents the 

normalized mode-I DSIFs for the three time steps. As shown in Fig. 16, the normalized 

values of DSIF evaluated by EXP + Lump1 and EXP + Lump2 agree well with the exact 

solution. As    decreases, nevertheless, either EXP + Lump1 or EXP + Lump2 approaches 
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to the analytical solution in an oscillatory way, and the deep reason for this deserves a further 

investigation. 

 

 

In addition, the results of EXP + Lump1 and EXP + Lump2 are also drawn in the same 

figure for a given time step, as shown in Fig. 17. As can be seen in Fig. 17, again, results of 

EXP + Lump2 are in agreement with those of EXP + Lump1. 

4.2 Edge-crack in a three-point bending beam 

As the second example for the stationary dynamic crack problem, a plane strain three-point 

bending beam is considered. The problem definition is schematically depicted in Fig. 18. Fig. 

19 gives the discrete model for this problem. The parameters are taken as depth W = 0.01 m, 

length L = 0.055 m, support distance S = 0.04 m, crack length a = 0.005 m, Young’s modulus 

E = 210 GP, Poisson’s ratio v = 0.3, density   = 7860 kg/m
3
. The beam is subjected to a 

Heaviside step load as depicted in Fig. 11, and a step load of the amplitude    = 500 MPa is 

applied at the top of the beam over a length of l = 0.002 m. The total computation time for 

this problem will be set as  .  μs. The time step    is set as  .    μs in this section. The 

mode-I DSIF is evaluated and the computed result is then presented in Fig. 20. For 

convenience, the computed DSIFs are normalized by the static mode-I SIF [52] 
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Due to the lack of analytical solution for this problem, a reference solution is calculated by 

IMP + Consist using the discretized model presented in Fig. 19. The normalized mode-I 

DSIFs as a function of time evaluated by EXP + Lump1 and EXP + Lump2 are evaluated, 

and the results are then compared with the reference solution. Fig. 20 presents the normalized 
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mode-I DSIFs for this problem. As shown in Fig. 20, the normalized values of DSIFs 

achieved by EXP + Lump1 and EXP + Lump2 agree well with the reference solution. 

4.3 Response analysis of a laminated cantilever under a dynamic extension 

Shown in Fig. 21 is the tension-time curve acting in the horizontal direction and on the upper 

beam of the laminated cantilever displayed in Fig. 22. The interface between the two identical 

beams is smooth and taken as a crack cutting through the corresponding one beam. 

Here are the material parameters: Young’s modulus E = 2.010
10

, Poisson’s ratio  = 0.3, 

and the density  = 2650. The maximum tension    = 10
6
. The gravity is ignored. The 

discrete model is displayed in Fig. 23, where 299 patches are generated. 

Although it has been successful to avoid using spurious contact springs in DDA [28], there 

are some technical difficulties to do so in NMM. In this study, therefore, the contact 

conditions and the essential boundary condition are still enforced using the penalty method, 

with the contact penalty parameter representing the normal spring stiffness   
  = 10E, and 

the essential boundary penalty parameter   
  = 10

7
E. 

The results to be exposed are evaluated by IMP + Lump2 with    = 10
-4

s, and in excellent 

agreement with those by IMP + Consist. 

Shown in Fig. 24(a) are the horizontal displacement responses of monitored points A and B, 

see Fig. 22, in the time interval [0, 1] s. Clearly, the horizontal displacement response of the 

upper point B is much more violent than that of the lower point A, in agreement with our 

intuition. 

In theory, this is a perfectly elastic structure and hence a conservative system. As a result, 

even after the external load acting at the right end of the upper beam is removed, the upper 

beam should vibrate periodically forever. However, the behavior illustrated by Fig. 24(a) is 

not like this. We believe this is because the Newmark time integration algorithm is not 

symplectic. As we know, in simulating the dynamic behavior of a conservative system, even 
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those time integration algorithms of high precision, such as the fourth order Runge Kutta 

method, cannot assure the long-term numerical stability, let along the second order Newmark 

method. To reflect the long-term behavior, we should employ a symplectic integrator, which 

will be another important topic and can be referred to Ref [53] for more details. 

The details in the time interval [0, 0.1] are displayed in Fig. 24(b). Sure enough, after the 

external load is removed at t = 0.04s, the horizontal displacement of the upper beam behaves 

approximately periodical during a rather long time period of [0.04, 0.1] – 0.1s = 2.5 times of 

the loading history. This suggests that the short term results evaluated by the Newmark 

method are still reliable. 

Let’s look at the vertical responses of the two beams shown in Fig. 25. After the external 

load is removed, the Poisson effect corresponding to the horizontal deformation of the upper 

beam causes it to deform vertically, and further causes the lower beam to deform vertically 

through the contact between the two beams. 

All the observations from the calculated results follows our intuitions. For example, while 

the upper beam gets longer and thinner under the extension, the lower beam has no 

deformation because of no contact. Another observation of Fig. 25(a) is that the vertical 

amplitude of the two beams is in the same order. 

5. DISCUSSIONS AND CONCLUSIONS 

The mass lumping scheme, which is suitable to any partition of unity based method, is 

presented in the context of NMM in this study. The lumped mass matrices have the following 

dynamic properties. 

1) critical time steps corresponding to the lumped mass matrices are much larger than those 

to the consistent mass matrices; 

2) for a given problem domain, a finer mesh needs a smaller critical time step; 

3) critical time steps generated by the proposed two lumped mass matrices, namely, by 
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equations (39) and (41), have no essential difference;  

4) in contrast to XFEM, the critical time step corresponding to NMM does not decrease 

even when the crack passes through nodes, namely, it is almost independent upon the crack 

tip; 

5) and even if an implicit time integration scheme is adopted, the results yielded by the 

proposed lumped mass matrices are in agreement with those by the consistent mass matrices. 

In addition, two numerical examples are conducted to evaluate the performance of explicit 

time integration schemes with the two lumped mass matrices in solving stationary dynamic 

crack problems. Conclusions are drawn as follows. 

1) the optimum value of    (equation (31)) for the computation of the interaction integral 

is 1.0;  

2) DSIFs achieved by both EXP + Lump1 and EXP + Lump2 converge well to the exact 

solution as the mesh gets finer;  

3) and results from EXP + Lump1 have no essential difference from EXP + Lump2 and 

both agree well with analytical solution or reference solution. 

Finally, all the analysis results suggest that the lumped matrices are able to supersede the 

consistent mass matrices in all the situations. 
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Table 1 Critical time steps without discontinuity 

Critical time step Mesh 5×5 Mesh 10×10 

          1.3 × 10
-4

 6.4 × 10
-5

 

       2.3 × 10
-4

 1.2 × 10
-4
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Figure 1 A 2-D elastic cracked body. 
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Figure 2 Mathematical patches, physical patches and manifold elements in NMM. 
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(a) At the outset, real node 
pN 7-1  and phantom node 

pN 72-  coincide 

 

(b) If large movement occurs, real node 
pN 7-1  and phantom node 

pN 72-  separate 

Figure 3 Interpretation of real and phantom nodes. 
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Figure 4 Area path of interaction integral AJ and definition of q. 
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(a) no crack is considered (b) crack varies vertically in [4, 6] 

  
(c) crack varies vertically in [4, 6] (d) crack tip varies horizontally in [4, 6] 

 

Figure 5 Mesh 5×5 to compute critical time step of different crack position 
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(a) no crack is considered (b) crack varies vertically in [5, 6] 

  
(c) crack varies vertically in [5, 6] (d) crack tip varies horizontally in [5, 6] 

 

Figure 6 Mesh 10×10 to compute critical time step of different crack position 
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(a) crack cut through domain (Fig. 5(b)) (b) crack varies vertically (Fig. 5(c)) 

 
(c) crack varies horizontally (Fig. 5(d)) 

Figure 7 Critical time step of mesh 5×5 vs crack position for          and       
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(a) crack cut through domain (Fig. 6(b)) (b) crack varies vertically (see Fig. 6(c)) 

 
(c) crack varies horizontally (Fig. 6(d)) 

Figure 8 Critical time step of mesh 10×10 vs crack position          and       

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Relative crack position

N
o
rm

al
iz

ed
 c

ri
ti

ca
l 

ti
m

e 
st

ep

 

 

Consist

Lump1

Lump2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Relative crack position

N
o
rm

al
iz

ed
 c

ri
ti

ca
l 

ti
m

e 
st

ep

 

 

Consist

Lump1

Lump2

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Relative crack position

N
o
rm

al
iz

ed
 c

ri
ti

ca
l 

ti
m

e 
st

ep

 

 

Consist

Lump1

Lump2



 

 

This article is protected by copyright. All rights reserved. 

 

 

 
 

Figure 9 Heaviside step load. 

 

 

 

 

 

 

 

 

 
 

Figure 10 Finite geometry of semi-infinite crack problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 0

t

0

a

L

2H



 

 

This article is protected by copyright. All rights reserved. 

 

 

 

 
(a) 62 PPs 

 
(b) 199 PPs 

 
(c) 378 PPs 

 

Figure 11 Discretized models of a semi-infinite crack. 
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(a) Δt =    μs (b) Δt =     μs 

 

Figure 12 Comparison of accuracy of different mass matrices using implicit time integration 

(378 PPs). IMP = implicit time integration plus NMM. Consist = consistent mass matrix. 

Lump1 and Lump2 indicate       corresponding to equation (39) and equation (41), 

respectively. 
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(a) EXP + Lump1 

 
(b) EXP + Lump2 

 

Figure 13. The effect of integration domain size on DSIF 
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(a) EXP + Lump1 

 
(b) EXP + Lump2 

 

Figure 14 Convergence of DSIF for semi-infinite crack 
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(a) 62 PPs (b) 199 PPs 

 
(c) 378 PPs 

 

Figure 15 Comparison of accuracy by EXP + Lump1 and EXP + Lump2 with different mesh 

density 
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(a) EXP + Lump1 

 
(b) EXP + Lump2 

 

Figure 16 The effect of time step on DSIF. 
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(a)   μs (b)   μs 

 
(c)  .  μs 

 

Figure 17 Comparison of accuracy of EXP + Lump1 and EXP + Lump2 with different time 

step. 
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Figure 18 Geometry of a three-point-bending beam 

 

 

 

 

 

 
Figure 19 Discretized model of a three-point-bending beam (421 PPs). 

 

 

 

 

 

 

 

 
 

Figure 20 Comparison of accuracy by EXP + Lump1 and EXP + Lump2 on DSIF for the 

three point bending beam. 
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Figure 21 Tension-time curve acting on upper beam in laminated cantilever in Fig. 

22 

 

 

 

 

 

 
Figure 22 Geometry of a sample with a cutting through crack. 

 

 

 

 

 

 

 

 

 
Figure 23 Discretized model of a cantilever (299 patches) 
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(a) ux – time curves during 0 to 1 s 

 
(b) Details of ux in [0, 0.1] 

Figure 24 Horizontal displacement ux of monitored points A and B. 
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(a) 

 
(b) 

Figure 25 Vertical displacement of monitored points A and B 
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