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Abstract: Stability analysis of potential slip surfaces is one of the core steps of slope safety evaluation. In this study, a novel model was
developed that considers the critical unstable condition that represents the limit equilibrium and displacement constraints along a prescribed
slip surface. The stress distribution and the safety factor of the prescribed slip surface in the critical state can be obtained by directly solving
the nonlinear equations formed by the model. By incorporating the finite-element stress analysis, the proposed model does not require inter-
slice force assumptions as do the traditional limit-equilibriummethods and can consider the influence of stress perturbation from outside of the
slip body on its stability. The numerical algorithm is also detailed in the article. In addition, an analysis of three examples is carried out to vali-
date the effectiveness of the proposed model and to demonstrate its feature of fast convergence. DOI: 10.1061/(ASCE)GM.1943-
5622.0001034.© 2017 American Society of Civil Engineers.
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Introduction

Stability analysis is the precondition to designing a slope that should
be stable and to taking reinforcement measures when the slope is
suffering problems of instability.

There are many methods for evaluating slope stability, and the
majority of them are limit-equilibrium methods (LEMs) [e.g.,
Bishop (1955); Morgenstern and Price (1965); Spencer (1967);
Janbu (1975); Ahmed et al. (2012)] because of their relative sim-
plicity and the experience accumulated by geotechnical practi-
tioners for decades (Liu et al. 2012). In the LEM, a coefficient called
factor of safety (FOS) is employed to reduce the shear strengths of
all the points on the slip surface until the surface reaches the critical
state or the so-called limit-equilibrium state. To solve the statically
indeterminate problem, the slip body is discretized into many verti-
cal slices with the introduction of interslice force assumptions,
which are the main differences among the various LEMs. However,
the assumption of the internal force may result in a notably different
distribution of normal stress on the slip surface, thus affecting the
calculated FOS. Furthermore, because the stress–strain behavior is

not covered in the LEM, the anchoring force is usually simplified as
a concentrated force applied on one of the slices, and the influences
of disturbances from outside the slip body, such as excavation and
loading, cannot be considered.

As a result of the outstanding advantages of the finite-element
method (FEM), FEM-based approaches have seen wide applica-
tions in slope engineering. Zienkiewicz et al. (1975) first proposed
the idea of a shear strength-reduction method (SRM) based on the
FEM, and later Donald and Giam (1992), Matsui and San (1992),
Dawson et al. (1999), Griffiths and Lane (1999), Zheng et al.
(2005), Bai et al. (2014), and Isakov and Moryachkov (2014),
among others, adopted and developed it for slope stability analysis.
The physical meanings of the FOS defined by the SRM and the
LEM are actually the same. The difference is that the strength-
reduction range in the SRM is the entire slope, whereas in the LEM,
it is limited to a given slip surface. Many researchers [e.g., Cheng et
al. (2007); Liu et al. (2015)] have compared the SRMwith the LEM
to illustrate their advantages and limitations. Generally speaking,
the SRM is able to accommodate any slope shape, simulate various
properties of the mechanical behavior, and bypass many of the defi-
ciencies that are inherent within the LEM. More importantly, the
SRM locates the critical slip surface automatically from the fields of
displacement (Wang et al. 2016; Yuan et al. 2016), equivalent plas-
tic strain (Zheng et al. 2009), or other parameters without the opti-
mization measures. However, the SRM is unable to analyze a non-
critical slip surface of interest (i.e., local minima), which may also
need treatment in engineering practice, which is why Cheng et al.
(2007) suggested that the LEM should be carried out as a cross
reference.

Another FEM-based approach for calculating the FOS of a
given slip surface is the enhanced limit-strength method (ELSM),
in which the ratio of the shear strength integral to the shear stress
integral along the slip surface is defined as the FOS (e.g., Brown
and King 1966; Kulhawy 1969; Naylor 1982; Fredlund et al.
1999). The definition of the FOS by the ELSM for a circular slip
surface is equivalent to that defined by the Fellenius method. The
integral of the directional shear stress along a noncircular slip
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surface has an uncertain physical meaning, although a number of
examples have shown that the FOSs by the LEM and the ELSM
are very close. Consequently, Ge (2010) proposed a modified
ELSM called the vector-sum method, in which the principal slid-
ing direction of the slip body is defined, and the stress on the slip
surface is projected onto this direction for a vector integral.
However, the concept of the principal sliding direction remains
ambiguous, and there is no unified method to determine it. In
addition, the stability analysis based on the stress field of the sta-
tus quo in the ELSM does not obey Pan’s extremum principle, as
proven by Chen (1998).

To calculate the FOS of a prescribed slip surface based on the
strength-reduction concept without any assumptions, a novel
model that imposes additional constraints on the boundary-value
problem of the equilibrium equation of the slope is proposed in
this article. The constraints, including conditions of the stress and
displacement on the slip surface, are used for describing the criti-
cal state of the slip surface. By incorporating the FEM, the FOS
and the stress field in the critical state of the slip surface can be
obtained by solving the nonlinear equations formed by the model
with the Newton method. For comparison, the Morgenstern–
Price (MP) method (Morgenstern and Price 1965) with an inter-
slice function of a half sine and the SRM that performs the
strength reduction only on the slip surface (termed SRM-slip) are
considered.

Model for the Stability Analysis of a Given
Slip Surface

Governing Equations of Stress Analysis Problem

Consider a two-dimensional (2D) slope X bounded by boundary C
externally, in which the slip surface Cs separates the slope into a
slip body Xþ and a slip bed X�, as shown in Fig. 1. The master–
slave concept in classic contact mechanics is adopted here, such
that the master and slave bodies in this study pertain to each side of
the slip surfaceCs. Therefore,X

� is assigned to the master side, and
Xþ is assigned to the slave side. For notational convenience, the
superscriptsþ and – are used to denote the quantities associated
with Xþ and X�, respectively, and the subscript s is used to denote
the quantities associated withCs. Considering that the stability anal-
ysis is usually for Xþ, X� can be regarded as a rigid body. The
boundary-value problems governing the equilibrium equation in
this case can be written as

r � s þ b ¼ 0 in X

s � n ¼ ~t on Ct

u ¼ ~u on Cu (1)

where s = Cauchy stress tensor; u = displacement vector;r = gra-
dient operator; b = body force vector; eu andet = prescribed traction
and displacement on the natural boundary Ct and the essential
boundary Cu, respectively; Ct [ Cu ¼ C, Ct \ Cu ¼ 1; and n =
unit outward normal vector ofC.

Considering a small deformation assumption, the geometric
equation can be expressed as

e ¼ 1
2

ruþ urð Þ (2)

where e = strain tensor.

The relationship between the stress tensor s and the strain tensor
e can be established through a constitutive equation, and the sim-
plest one is linear elasticity, generally described as follows:

s ¼ D : e (3)

where D = fourth-order elastic tensor of the slope material with
respect to a plane strain.

Because the slip surface is regarded as an interface to the slope,
the boundary-value problems described previously can be aug-
mented by

s � ns ¼ t � �tNns þ tTms on Cs (4)

where ns = unit outward normal vector to the slave side of the slip
surface Cs; t is the traction acting on the slave side of the slip sur-
face, which can be divided into the normal stress tN (compressive
stress is positive) and shear stress tT ; andms = unit tangential vector
toward the sliding direction of the slip body. The traction acting on
the Cs of the master body is –t, essentially the same as t but in the
opposite direction.

Critical Unstable Condition

The limit equilibrium condition of any point x on the slip surface
can be expressed as

tT ¼ 1
Fs

tN tanf þ cð Þ 8x 2 Cs (5)

where Fs = unknown FOS of the slip surface Cs; and f and c = fric-
tion angle and cohesion of the slip surface, respectively. Thus, it can
be seen that the limit-equilibrium condition contains the Mohr–
Coulomb criterion and the shear strength reduction.

Substituting Eq. (5) into Eq. (4) yields

t ¼ �tNns þ 1
Fs

tN tanf þ cð Þms on Cs (6)

Clearly, the traction between the slip surface is related to only tN
and Fs.

For the contact problem, the two sides of the contact surface are
initially in full contact, and the impenetrability conditions (also
known as KKT conditions) are

Fig. 1. Definition of the 2D slope with a slip surface at the critical
state
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gN � 0; tN � 0; gNtN ¼ 0 8x 2 Cs with gN ¼ ½u� � ns (7)

where ½u� ¼ u� � uþ represents the relative displacement along the
slip surface; and gN is the relative normal displacement of the con-
tact surface.

Eq. (7) implies that if gN < 0, there is a gap between the two
sides, and tN ¼ 0, and if gN ¼ 0 and tN � 0, the two sides are in
contact. For the contact condition of the slip surface Cs, the two
sides always remain in contact, so the impenetrability condition can
be simplified as

gN ¼ 0 8x 2 Cs (8)

In addition, because the slip surface is in the critical state, there
should exist one point on the slip surface with the relative tangential
displacement equaling zero, that is:

gT ¼ 0 9x 2 Cs with gT ¼ �½u� � ms (9)

The physical meaning of Eq. (9) is that when the slip surface is
in the critical state, there should be one last point on the slip surface
that is about to slide (gT ¼ 0) when the shear stress reaches the
shear strength. At that time, the relative shear displacements of the
other points on the slip surface are larger than zero. This point is
called the critical unstable point (CUP). The influence of the CUP
selection on the FOSwill be discussed in detail.

The combination of Eqs. (6), (8), and (9) is called the critical
unstable condition throughout the paper, and it reflects the stress
and the displacement constraints of the slip surface in the critical
state.

FEM-Based Numerical Model

Treating the slip surface as the external boundaries for Xþ and X�,
according to the principle of virtual work, the equivalent weak form
of the previously mentioned boundary-value problem with the trac-
tion between the slip surface can be expressed as

dP ¼ dPu �
ð
Cs

½d u�tdC

¼ dPu þ
ð
Cs

d gNtN þ d gT
1
Fs

tN tanf þ cð Þ
� �

dC ¼ 0

(10)

with

dPu ¼
ð
X
d ɛ : D : edX�

ð
X
d u � bdX�

ð
Ct

d u �etdC (11)

where d = virtual; and Pu = total potential energy for the original
problemwithout the traction on the slip surface.

The normal stiffness kN , which is equivalent to the penalty pa-
rameter in the penalty function method that imposes the constraint
of Eq. (8), is introduced in this study. Consequently, we have

tN ¼ kNgN 8x 2 CS; (12)

in which kN � 1. Compared to the Lagrange multipliers method,
the penalty method has the advantage of introducing no new degree
of freedom and zero diagonal terms. However, the normal stiffness
allows the two sides of the slip surface to penetrate into each other
slightly, that is, gN > 0, which is approximately satisfied by Eq. (8).

To avoid the influence of the normal stiffness selection on the normal
stress distribution along the slip surface, the augmented Lagrange
multipliers method (see Simo and Laursen 1992; Hirmand et al.
2015) is implemented for dealing with the constraint of Eq. (8):

tN ¼ λN þ kNgN 8x 2 CS; (13)

where λN , the augmented Lagrange rebounding force, is not an
unknown as in the Lagrange multiplier method and can obtained by
augmentation iterations. The determination of λN in the mth step
can be updated with

λ mþ1ð Þ
N ¼ λ

mð Þ
N þ kNg

mð Þ
N with λ 0ð Þ

N ¼ 0 (14)

Substituting Eq. (12) into Eq. (10), the variational formulation in
each augmentation can be written as

FsdPu þ
ð
Cs

Fsd gN þ d gStanfð ÞkNgNdCþ
ð
Cs

	 Fsd gN þ d gStanfð Þλ mð Þ
N dCþ

ð
CS

cd gSdC ¼ 0 (15)

According to the finite-element interpolation, the displacement
and strain fields can be described, respectively, as

u xð Þ ¼
X
I2N

NIuI � N xð Þu (16)

e xð Þ ¼
X
I2N

BIuI � B xð Þu (17)

whereN = node set of the finite-element mesh; NI = shape function;
and uI = vector of nodal degrees of freedom; in addition, B is the
strain matrix that can be obtained using B ¼ SN, in which S is a suit-
able linear differential operator and can be determined by Eq. (2).

By approximating the virtual displacement and strain fields
d u xð Þ and d e xð Þ in analogy with Eqs. (15) and (16), the discrete
form of the variational formulation can be derived as

FsK þ FsKSN þ KSTð ÞU þ FsQ
mð Þ
SN þ Q mð Þ

ST � FsQ ¼ 0 (18)

with

K ¼
ð
X

BTDBdX

KSN ¼ kN

ð
Cs

NTnSn
T
SNdC

KST ¼ kN

ð
Cs

tan fNTmSn
T
SNdC

Q mð Þ
SN ¼

ð
Cs

λ
mð Þ
N NTnSdC

Q mð Þ
ST ¼

ð
Cs

tan f λ
mð Þ
N NTmSdCþ

ð
Cs

cNTmSdC

Q ¼
ð
X

NTbdXþ
ð
Ct

NT~tdC

where U = displacement vector of all the mesh nodes; D = elastic

matrix; and Q mð Þ
SN and Q mð Þ

ST = nodal forces that are induced by aug-
mentation traction components perpendicular to and parallel to the

© ASCE 04017118-3 Int. J. Geomech.
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slip surface, respectively, and can be calculated with the known

nodal value of λ
mð Þ
N on the slip surface at the mth augmentation

iteration.
Selecting one of the nodes x on the slip surface as the CUP, the

constraint condition of Eq. (9) can be written as

KcupU ¼ 0 with Kcup ¼ kNm
T
S xð ÞN xð Þ (19)

in which kN is used to make the nonzero elements in matrix KSN and
vectorKcup have the same order of magnitude.

A stability analysis of the slip surface based on Eqs. (17) and
(19) involves solving the following nonlinear equations with the
unknowns ofU and Fs:

H mð Þ U ;Fs

� �
¼ FsKþFsKSN þKSTð ÞUþFsQ

mð Þ
SN þQ mð Þ

ST �FsQ
KcupU

" #

¼ 0 (20)

To summarize, some advantages of the proposed model for solv-
ing the FOS are as follows: (1) The interslice force assumption is no
longer required as in the traditional LEMs; (2) by employing the
finite-element stress analysis, the consideration of reinforcements
and disturbances from outside of the slip body is more reasonable;
(3) the FOS of the slip surface can be obtained by solving the non-
linear equations directly, and some solution techniques such as the
Newton method that are significantly faster than the bisection
search used in the SRM can be applied.

Solution Algorithm

The Newton method (see Burden and Faires 2011) is used to solve
the nonlinear equations of Eq. (20). In the ith step of the Newton
iteration, the Jacobian matrix is

J Xi�1ð Þ ¼ Fi�1
s K þ KSNð Þ þ KST K þ Kcnð ÞUi�1 þ Q mð Þ

SN � Q
Kcup 0

" #
(21)

where XT ¼ U
T

Fs

h i
.

The new values of the unknowns at this step can be updated with

Xi ¼ Xi�1 � J�1 Xi�1ð Þ � H Xi�1ð Þ (22)

In solving the equations, the processes of the Newton iteration
and the augmentation loop end when the following conditions are
satisfied, respectively:

hg ¼ Hj= Qj < eg
���� (23)

h l ¼ ‘�2
ð
CS

gNdC < el (24)

where ‘ = length of the slip surface, that is, ‘ ¼ Ð
CS
dC. In the subse-

quent examples, eg and el in this study are set to 10−6 and 10−10,
respectively.

Based on the proceeding derivations and the solution method, a
code named FELE2D is developed. The details of the algorithm are
shown in Fig. 2.

Examples and Verifications

Example 1: Planar Slip Surface

Fig. 3 shows a straightforward example of a planar slip surface. The
rock-like material has an elastic modulus E of 28GPa, Poisson’s ra-
tio � of 0.23, and unit weight g of 27 kN·m3. The planar slip surface
has an incline angle u of 30° and length of 11.55m. The volume V
of the slip body is 28.87 m3/m. The analytical expression of the
FOS for the slip surface is given by

no

Fig. 2. Flow diagram of algorithm of FELE2D

30°

Fig. 3. Example 1: A 2Dwedge on a planar slope; the wedge is discre-
tized into 192 triangular elements with 122 nodes, and the slip bed is
treated as a rigid body

© ASCE 04017118-4 Int. J. Geomech.
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Fs ¼ tanf cotu þ ‘c
Vgsinu

(25)

Table 1 lists the FOSs calculated by the analytical expression
and the proposed method with kN equaling 100GPa/m. The FOSs
of the four cases acquired using the proposed method were found
to be very consistent with those by the analytical solution, which
indicates that the accuracy of FELE2D is very high. The conver-
gence information in solving Case 4 plotted in Fig. 4 exhibits a
rate of quadratic convergence of the Newton iteration, such that
the convergence is achieved in no more than three iterations in
each augmentation. Note that the Newton algorithm converges in
only one iteration within the subsequent augmentations because
the FOS and the field of displacement from the first augmentation
are quite close to the final solution. In addition, the impenetrabil-
ity condition could be satisfied at a desired level of accuracy by
three augmentations. However, the convergence rate of the aug-
mented Lagrange multipliers method is influenced by the normal
stiffness (Hirmand et al. 2015). Technically, by setting kN three
orders of magnitude larger than the maximal diagonal element in
K, it is possible to guarantee a fast convergence rate and avoid an
ill-conditioned penalty formulation.

The FOSs of the wedge in Case 4 calculated using the MP, the
SRM-slip, and the proposed method were 1.593, 1.607 and 1.593,
respectively, thus differing very little. In this analysis by the MP,
the slip surface was divided equidistantly into a total of 25 slices
along the x-axis. In this analysis by the SRM-slip, the penalty
method with both the normal and tangential penalty numbers equal-
ing 100GPa was adopted to enforce the normal and tangential
constraints.

In Fig. 5, a comparison of the normal stresses along the planar
surface calculated by these three methods in Case 4 is presented.
The curve of the normal stress distribution from the MP shows a
linearly decreasing trend from left to right with a slight sinusoidal
variation because the MP regards the slip body as a rigid body
and assumes that the normal and tangential forces between the sli-
ces have a relation of half sine function. On the contrary, the pro-
posed method and the SRM-slip are both based on the FEM, and
the slip body is regarded as a deformable body. Therefore, the dis-
tributions of normal stress acquired are very consistent and differ-
ent from those obtained by the MP. However, after 16 iterations
of the bisection search, the FOS obtained from the SRM-slip was
1.607, which is slightly larger than the analytical value, indicating
that the SRM-slip might be susceptible to the unstable criterion.
Moreover, it has a lower computational efficiency than the pro-
posed method from the perspective of the number of iterations.
Although the augmentation can greatly reduce the penetration of
the two sides of the slip surface, it had almost no impact on the
FOS and the normal stress distribution of the planar slip surface,
as shown in Figs. 4 and 5.

If the finite-element model for a slip body is established upon
the coordinate system with the x-axis parallel to the planar slip
surface, the constraint on the tangential displacement of a point
on the slip surface is equivalent to eliminating the rigid-body
motion in the x-direction in the case of all the external forces,
including gravity and the normal and shear stresses on the slip
surface, satisfying the force and moment balances. In other
words, the selection of the CUP will cause rigid-body motion
only along the slip surface without changing the stress field of the
slip body, which can be proven by a translational relationship
between the curves of the tangential displacement distribution
corresponding to three different CUPs, as shown in Fig. 6.
Therefore, the selection of the CUP for the planar slip surface has

no effect on the FOS and the stress distribution. However, accord-
ing to the definition of the CUP, the true CUP for Example 1 is the
rightmost point on the slip surface whose tangential displacement
is the smallest among all the points on the slip surface and equals
zero. The displacement field of the slip body with the actual CUP
is shown in Fig. 7. Apparently, it can tell the situation of the dis-
placement that already happened in different parts of the slip
body before it loses its stability.

Table 1. FOSs Obtained Using the Analytical Method and the Proposed
Method for Example 1 with Four Groups of Parameters

Case

Shear strength
parameters FOS

c (kPa) f (°) Analytical solution FELE2D

1 0 35 1.21280 1.21280
2 0 30 1.00000 1.00000
3 0 25 0.80767 0.80767
4 20 30 1.59259 1.59259

10-15

10-10

10-5

100

105

1

1.5

2

0-0 1-0 2-0 0-1 1-1 0-2 1-2

Fig. 4. Convergence profiles in solving Case 4 of Example 1 by the
FELE2D; the indices of the x-axis with a format of i-m denotes the ith
Newton iteration in themth augmentation

0 2 4 6 8 10
-20

0

20

40

60

80

100

120

Fig. 5. The distributions of normal stress on the planar slip surface in
Example 1 using the MP and the proposed method with and without
augmentation (Case 4)
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Example 2: Circular Slip Surface

An example slope from test problem EX1(d) of the Association for
Computer Aided Design, Australia (ACADS) (Donald and Giam
1992) will be analyzed to illustrate the proposed procedure for a cir-
cular slip surface. The geometry of the slope is plotted in Fig. 8. The
impact of groundwater is not considered, and the soil parameters
are listed in Table 2. The analyzed circular slip surface, which
passes through Points A and Cwith a radius of 19.616m, is the criti-
cal slip surface of the slope searched by SLIDEwith the Bishop sim-
plified method (Bishop 1955) very close to the critical slip surface
from Chen (2003) using the STAB code. In addition, the seismic
force is presumed to be a pseudostatic force that acts in the

horizontal direction with a seismic coefficient of 0.15. As in
Example 1, the slip bed is still regarded as a rigid body, so only the
slip body is discretized. In this part, two cases were studied: Case 1
had the same conditions as the original test problem without rein-
forcement, and Case 2 was a multilayered sliding body with a sup-
port (Fig. 8).

Based on the Bishop simplified method, Donald and Giam
(1992) recommended the overall FOS of the slope to be 1.0. In this
analysis for Case 1, the FOSs of the slip body determined by theMP
and the proposed method (kN ¼ 106 kPa/m) were 0.987 and 0.993,
respectively, which are very close to the previous results. However,
there is a difference between the corresponding normal stress distri-
butions shown in Fig. 9, which means that the FOS of the circular
slip surface is insensitive to the normal stress distribution, even
though the slope is inhomogeneous. As shown in Fig. 10, the
Newton method also exhibited good convergence for a circular slip
surface. Moreover, the augmentation still had a negligible influence
on the FOS of a circular slip surface, as shown by a comparison of

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5 10 -3

Fig. 6. Distributions of relative tangential displacement on the planar
slip surface in Example 1 with different CUPs (Case 4)

Fig. 7. Total displacement contour of the wedge in Example 1 with the
x-coordinate of the CUP equaling 10m (Case 4)

15°

Fig. 8. Example 2: Amultilayered soil slope with a circular slip surface; the slip body is discretized into 200 triangular elements with 129 nodes

Table 2. Physical and Mechanical Properties of the Three Soil Layers in
Example 2

Layer c (kPa) f (°) g (kN·m3) E (kPa) �

1 0.0 38.0 19.5 1.0	 104 0.25
2 5.3 23.0 19.5 1.0	 104 0.25
3 7.2 20.0 19.5 1.0	 104 0.25

30 35 40 45 50 55
0

20

40

60

80

100

Fig. 9. Distributions of normal stress on the slip surface from the MP
and the proposed method with and without augmentation for Case 1 of
Example 2
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the normal stress distributions from the proposed method with and
without augmentation (Fig. 9).

Similarly, the role of the CUP in the circular slip surface is to
eliminate the rigid-body rotation around the center of the circular
slip surface, which can be further testified by the distribution of the
relative tangential displacement shown in Fig. 11. Thus, selecting a
random point as the CUP for a circular slip surface will not affect
the final results except for the displacement field.

For Case 2, a row of grouted tiebacks was added to the slope at
an angle of –15° from the horizontal. The tieback was 15m long,
and the spacing between each tieback was 2.5m. Each tieback was
pretensioned with a 100-kN active force on the anchor point.
Typically, the forces exerted by a resistant element always act on
the point of intersection of the slip surface and the resistant element
in the LEM. Therefore, the normal stress of the slice upon which the
support force is applied is significantly higher than that of the sur-
rounding slices, as is illustrated in Fig. 12. In contrast, the proposed
method regards the support as a concentrated load on the anchor
point, which is more consistent with the reality. As a result, the nor-
mal stress of the part near the tieback is increased to a certain extent.
Because the friction angle of Soil Layer 1 was clearly higher than
that of the other two layers, and the slice on which the support force
was exerted was situated in only this layer, the calculated reinforce-
ment effect from the perspective of the FOS by the MP (from 0.987

to 1.051) is surely superior to that by the FELE2D (from 0.993 to
1.045). Note that if the support element is considered to interact
with the discretized slope bed by the proposed method, the stress
distribution will be closer to the reality.

Example 3: Polyline Slip Surface

The example of a polyline slip surface is taken from test problem
EX3(b) of ACADS (Donald and Giam 1992), as shown in Fig. 13.
In the slope, there is a 0.5-m-thick weak interlayer, whose boundary
is not considered to improve the mesh quality. However, the shear
strength parameters of the slip surface within the interlayer were set
to the actual values. Donald and Giam (1992) specified the slip sur-
face AEFD, of which the segment EF in the weak interlayer will be
studied here. The phreatic line is assumed to be at the bottom of the
interlayer, and the geotechnical parameters of the soil layers are
given in Table 3. kN was set to 107 kPa/m. Two cases were studied
for this example: Case 1 had same conditions as the original test
problem, and Case 2 was tunneling beneath the slip surface.

Unlike the previously mentioned examples of planar and circular
slip surfaces, the FOS of the polyline slip surface varies for different
CUPs, as presented in Fig. 14. Therefore, how to choose the actual
CUP is the problem to be settled first in the proposed model.
According to Pan’s extremum principle, for a given slip surface, the
normal stress on the slip surface can be self-adjusted to maximize the
slip resistance (Chen 1998); therefore, the CUP should be selected at
the rightmost side of the slip surface, where the FOS of the slip sur-
face can reach the maximum (i.e., 1.458). Fig. 14 also presents the
distributions of gT on the slip surface corresponding to two different
candidate CUPs. By comparing the curves of the gT distribution and
the FOS variation, it is observed that the FOS corresponding to a can-
didate CUP is negatively correlated with the relative level of the gT
on this point. Therefore, the previously determined CUP is the point
with the minimal gT , which is in line with the definition of the CUP.
Moreover, adjusting the normal stress on the slip surface to maximize
its antisliding performance requires the occurrence of a relative tan-
gential displacement along the slip surface, which should point to the
sliding direction. Therefore, the actual CUP can also be automatically
determined to be the node with the minimal gT by a trial calculation,
in which the CUP is selected arbitrarily on the slip surface. In this
example, the leftmost Point A on the slip surface is first selected
as the CUP, and then the uppermost Point D with the smallest gT is
selected as the actual CUP.With D as the CUP, the gT of all the points
on the slip surface except the CUP itself is positive. The convergence

10-15

10-10

10-5

100

105

0.99

0.992

0.994

0.996

0.998

1

0-0 1-0 2-0 0-1 1-1 0-2 1-23-0

Fig. 10. Convergence profiles in solving Case 1 of Example 2 by the
FELE2D
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-100
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Fig. 11. Distributions of relative tangential displacement on the slip
surface in Example 2 corresponding to different CUPs (Case 1)
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Fig. 12. Distributions of normal stress on the slip surface using the
MP and the proposed method (Case 2 of Example 2)
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rate of the proposed method is also very fast for the polyline slip sur-
face, as shown in Fig. 15.

The final FOS of Case 1 from the proposed method was 1.458,
which is higher than the 1.266 obtained by the MP method by
approximately 13%. For this example, there was also a relatively
large difference in the FOSs within the LEMs, and the minimal and
maximal values among the results collected by Donald and Giam
(1992) were 1.195 and 1.450, respectively. It is hard to determine
which is more accurate, but the LEM clearly does not take into
account that the slip body needs to be deformed after a slight slip
along the polyline slip surface. Excluding the effect of abrupt
changes in the direction of the polyline slip surface, the distribution
of the normal stress determined by the MP shown in Fig. 16 was
actually very smooth. By contrast, the normal stress curve obtained
by the proposed method had a significant jump at the endpoints E
and F. If a candidate CUP (e.g., Point A) makes the gT at the

endpoint smaller, the corresponding results will be closer to the
results by theMP.

For Case 2, a tunnel with a diameter of 5m was arranged under
the slip surface. The center of the tunnel was located at Point G, as

Fig. 13. Example 3: A slope with a polyline slip surface; the model mesh has 472 nodes and 786 triangular elements

Table 3. Physical and Mechanical Properties of the Two Soil Layers in
Example 3

Soil c (kPa) f (°) g (kN/m3) E (kPa) �

1 28.5 20.0 18.84 6.0	 104 0.25
2 0.0 10.0 18.84 — —

40 45 50 55 60 65 70 75
-15
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-5

0
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10

15

1.2

1.25
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1.45

1.5

1.55

Fig. 14. The FOS for Case 1 of Example 3 varies with the position of
the CUP; the distributions of the relative tangential displacement along
the slip surface with two different CUPs are plotted for comparison
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Fig. 15. Convergence profiles for Case 1 of Example 3 using the
FELE2D with the x-coordinate of the DCP equaling 73.31m
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Fig. 16. Comparison of normal stress distributions from the MP and
the proposed method for Case 1 of Example 3; the normal stress distri-
butions before and after tunneling by the proposed method are also
compared
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shown in Fig. 13. Although the excavation of the tunnel did not alter
the geometry of the slip body, it could affect the FOS of the slip sur-
face because of the disturbance to the stress field within the slope.
For simplicity, the soil body was assumed to be elastic, with no tun-
nel support. Fig. 16 shows the changes in the normal stress distribu-
tion along the slip surface before and after tunneling. Because the
MP is a rigid LEM and is incapable of handling the disturbance
caused by tunneling beneath the slip surface, the normal stress dis-
tribution acquired from the MP will not change. After excavation,
the normal stress of the region above the tunnel was reduced, lead-
ing to a redistribution of the normal stress on the entire slip surface.
Therefore, the FOS of the slip surface after tunneling predicted by
the proposed method decreased from 1.458 to 1.361. It should be
acknowledged that the perturbation of the stress field was not as
pronounced as described previously because of the presence of the
tunnel support in reality. However, as an illustrative case, the
authors want to emphasize that the effects of the stress perturbation
can be considered by the proposed method. Positively, a more
rational consideration of the realities needs further development of
the FELE2D, including the implementation of elastoplastic models,
support elements, and groundwater.

Discussion of the Examples

These examples have shown the effectiveness and advantages of
the proposed method. Because there is a new concept of CUP and a
few techniques are involved in this method, there might be some
potential issues to be improved, as follows:
1. The augmented Lagrange multipliers can eliminate the drawbacks

of the penalty and Lagrange multipliers techniques and achieve a
predetermined tolerance for the impenetrability condition of the
slip surface. Nevertheless, its iterative procedure requires addi-
tional computation, which is detrimental to the optimization anal-
ysis for locating the critical failure surface. Conversely, the FOS
can converge in the initial augmented Lagrange step. Therefore,
taking the FOS tolerance (e.g., 0.001) as the convergence index,
the convergence of the double loop algorithm in the solution pro-
cedure of the augmented Lagrange multipliers method can be
accelerated. Furthermore, now that the augmentation has a negli-
gible influence on the FOS and the normal stress distribution of
the circular slip surface for the previous three examples, enabling
the second augmentation is not necessary.

2. The CUP, which establishes the critical state for a slip surface
along with the limit-equilibrium condition, is the core of the
proposed method. Mathematically, it introduces an additional
equation, and the FOS as an unknown can be solved together
with the displacement field from the equations. Interestingly,
the determination of the CUP complies with both its physical
meaning and Pan’s extremum principle. However, the authors
cannot give the reason why the FOS can be maximized with the
point of minimal gT on the slip surface as the CUP.
In addition, a trial procedure is required to locate the actual
CUP. By examining the distribution of the failure approaching
index (FAI, i.e., the ratio of shear strength to shear stress) on
the slip surface, a potential answer can be found to minimize
the computation caused by the trial. The CUP of each example
corresponds to the location where the FAI is the maximum, as
shown in Fig. 17. That is, the CUP is usually the point that is
the least likely to fail on the slip surface. Note that the FAI at
the rightmost point in Example 3 is actually infinite because its
shear stress is negative. Alternatively, the CUP can be deter-
mined by finding the position with the maximal FAI, which can
reduce the number of nonlinear equations that must be solved.
Moreover, carrying out the calculation of the FAI can provide

an initial value for the Newton iteration so that the convergence
can be accelerated.

3. Similar to the LEM, the proposed method is used for the analy-
sis of a given slip surface of a slope, so an optimization tech-
nique is needed to locate the critical slip surface. For cases such
as Example 2, if considering only the mesh of the slip body, the
calculation quantity of the proposed method should be similar
to that of the LEM. However, if considering the entire slope,
mesh reconstruction will be performed for every analyzed slip
surface, which increases the difficulty of identifying the critical
slip surface. Therefore, the extended FEM developed by
Belytschko and Black (1999) can be adopted, and the slip sur-
face can be regarded as a crack throughout the slope to avoid
mesh reconstruction. Technically, each node can be preset with
two enriched freedoms, and each element can be preset with a
certain number of integral points, all of which can be activated
if needed, thus greatly improving the search efficiency.

4. Solving the FOS of a slip surface is a statically indeterminate
problem. Additional constraint conditions must be introduced
to make the problem determinate in various methods. In other
words, the constraint conditions a method adopts, to some
extent, limit the application scope of the method. Cheng et al.
(2008) found that the influence of the interslice force function
on the FOS of a prescribed slip surface cannot be ignored in
some circumstances and suggested taking the maxima as the
FOS, which is consistent with Pan’s maximum principle.
Instead of the interslice force assumption, the proposed method
employs the compatibility condition of deformation and the
critical unstable condition to make the problem determinate
and obey Pan’s maximum principle. Therefore, it should be
more rational than the traditional LEMs.

Conclusion

This study proposed a novel model that combines the critical unsta-
ble condition and stress analysis for the stability analysis of a given
slip surface. The new model does not require the interslice assump-
tion and can solve many problems that the traditional LEMs cannot
solve. In addition to its superior accuracy, one of the highlights of
the model is that the FOS of the slip surface can be obtained simul-
taneously with the displacement field by solving the nonlinear equa-
tions formed by the model directly. Although the FEM was
employed as the discretization technique in this study, other

0 10 20 30 40
-15

-10

-5

0

5

Fig. 17. Distribution of FAI on the slip surfaces of Example 1 (Case
4), Example 2 (Case 1), and Example 3 (Case 1); the x-axis is the dis-
tance from the toe along the slip surface
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numerical approaches, for example, the boundary-element method,
are also effective. Some specific conclusions of this study are as
follows:
1. For planar slip surfaces, the FOS obtained by the proposed

method was found to be very consistent with the analytical
solution.

2. For planar and circular slip surfaces, although a large difference
existed between the normal stress distributions on the slip sur-
face obtained, respectively, from the proposed method and the
MP, the FOSs calculated by these two methods were very
close, which indicates that the FOSs of those two types of slip
surfaces are insensitive to the normal stress distribution. For
polyline slip surfaces, however, the FOSs obtained using the
proposed method might be notably different from those by the
MP methods. The reason is that the deformation of the slip
body considered by the proposed method causes a significant
change in the normal stress on the slip surface near the
endpoints.

3. The variation of the FOS induced by excavation beneath the
slip surface can be captured by the proposed methods. In con-
trast, the MP is insensitive to this process because its equilib-
rium equations are established on rigid slices.

4. The CUP concept introduced in this model has a clear physical
meaning, and its behavior can be translated into a descriptive
equation for the constraint of the relative tangential displace-
ment of the slip surface in the critical state. In addition, its
selection is in accordance with Pan’s extremum principle.

5. Example 1 showed that the results, especially the normal stress
distribution, from the proposed method and the SRM-slip were
very consistent. The proposed method can quickly achieve con-
vergence within two to three Newton iterations. In contrast, the
SRM-slip requires more than 10 bisection iterations. Addition-
ally, the FOS from the SRM-slip appears to be susceptible to
the unstable criterion.
Overall, the proposed method has a rigid theoretical basis. It not

only avoids the interslice assumption but also broadens the applica-
tion scope of the limit-equilibrium theory. Because the FEM is
incorporated, it is competent for evaluating a wide range of slopes.
Therefore, the proposed method is expected to be an effective and
practical tool for slope stability analysis.
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