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Abstract: Spherical element-based discontinuous deformation analysis (SDDA) usually uses simple types of contact such as sphere–sphere
and sphere–plane contact for detection. However, in practical engineering simulations, there is also found sphere–edge contact in the context
of interactions between spheres and fixed boundaries. This incompleteness of contact types in the original SDDA restricts its application to
problems involving complex boundary shapes. To fill this gap, this paper presents a sphere–edge contact model to extend the application of
SDDA to complex boundary shapes such as edges, corners, and finite and infinite planes. The contact formulation is deduced and the algorithm
is implemented in SDDA source code developed by the authors. Four numerical examples are simulated for verification. The results show that
the proposed model is correct and effective.DOI: 10.1061/(ASCE)GM.1943-5622.0001021.© 2017 American Society of Civil Engineers.
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Introduction

Discontinuous deformation analysis (DDA) is a numerical method
(Shi 1998). It can be used to analyze the discontinuous deformation
behavior of a discrete blocky system. DDA represents rock masses
as an assemblage of discrete blocks and joints as interfaces between
blocks. The principal equations, which are derived from Newton’s
second law or the principle of minimum potential energy, are solved
implicitly. Since the DDA method can simulate the large displace-
ments of a system, it has been applied widely in many practical en-
gineering circumstances such as tunnels (Yeung and Leong 1997;
Wu et al. 2004; Chen et al. 2016), rockfalls (Wu et al. 2005; Chen et
al. 2013), landslides (Sitar et al. 2005; Zhang et al. 2013; Jiao et al.
2014; Zhang et al. 2014; Zhang et al. 2015), and others (Bao et al.
2012; Jiang et al. 2013; Nie et al. 2014).

For any discontinuity-based numerical method, contact analysis
plays an important role. Unlike the distinct element method (DEM),
large penetration between blocks is not allowed in DDA. Accordi-
ngly, contact analysis in DDA is more precise and complex.
However, Cheng (1998) pointed out that the process of penetration
detection in DDA is extremely time-consuming, and he presented
two modifications to DDA in the problems of contact constraint.
Many methods and algorithms for the accurate and efficient solution of
contacts have been presented for DDA. Fan andHe (2015) developed a
new preprocessing and angle-based method for two-dimensional DDA
to determine entrance edges; this new method can not only reduce
forced contacts but also maintain the movement trend of blocks and
speed up open–close iterations. Jiang and Yeung (2004) and Yeung
et al. (2007) proposed an edge-to-edge contact model and a point-to-
face contact model for three-dimensional (3D) DDA to effectively
identify the contact types between two polyhedron-based blocks.
Wu et al. (2014) coupled neighbor searching with a contact-pattern
identification process and presented a multishell cover algorithm for
contact detection in 3D DDA. Shi (2015) introduced a new concept
of an entrance block to solve the contacts between two general
blocks; given a reference point, the contact computation can be sim-
plified. To efficiently solve contacts of polyhedral blocks, Zheng et
al. (2016) proposed a new angle-based contact detection approach
which consists of three phases, i.e., a rough search phase, a delicate
search phase, and an identification phase.

However, the contact detection of polyhedral blocks is complex
and time consuming. Against this background, fundamental studies
of the spherical element DDA (SDDA) have commenced (Zhao
2000; Beyabanaki and Bagtzoglou 2012; Jiao et al. 2015). SDDA
uses relatively simple contact types like sphere–sphere and sphere–
infinite plane contact to perform the contact detection. However, in
practical engineering simulations, there is a third type of contact,
sphere–edge contact, for dealing with the interaction between
spheres and fixed boundaries. This incompleteness of contact types
in the original SDDAmight result in errors in simulated results.

This paper presents a sphere–edge contact model for SDDA to
simulate complex sphere–boundary problems. The corresponding
formulation is deduced and the contact detection algorithm is imple-
mented into the SDDA source code. The proposed sphere–boundary
contact detection algorithm consists of two main loops: sphere–
plane contact search and sphere–edge contact detection. For
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verification, four numerical examples are simulated, and the results
show that the proposedmodel is correct and effective.

SDDA

Displacement and Deformation of Sphere

SDDA is a displacement-based method. Large displacement and rela-
tivemovement between spheres are the accumulation of small displace-
ment within each time step. Sphere elements are assumed to be rigid.
Therefore, the movement and deformation of the sphere are defined by
six independent deformation variables in the deformationmatrix (Di):

Dið Þ ¼ dx dy dz rx ry rz
� �T

(1)

where (dx, dy, dz) are the displacements along the x-, the y- and the
z-axes, respectively and (rx, ry, rz) are the rotation angles around the
sphere center.

The displacement function of an arbitrary point (x,y,z) of sphere
i can be written as

u
v
w

0
@

1
A ¼ Ti x; y; zð Þ� �

Dið Þ (2)

where Ti x; y; zð Þ� �
is called the displacement transformation matrix

of sphere i,

Ti x; y; zð Þ� � ¼
1 0 0 0 �z ��y
0 1 0 ��z 0 �x

0 0 1 �y ��x 0

0
BB@

1
CCA (3)

where �x = x-xc, �y = y-yc, �z = z-zc and (xc, yc, zc) are the coordinates
of the center of sphere i.

General Equilibrium Equations

According to the principle of minimum potential energy, the governing
equation of a system of spheres can be obtained from the extremum
condition of the total potential energy (including different kinds of de-
formation potential energy and potential energy of external forces).
Assuming that there are n spherical elements in the computational
model, the governing equation can be expressed as follows:

K11½ � K12½ � � � � K1n½ �
K21½ � K22½ � � � � K2n½ �
..
. ..

. . .
. ..

.

Kn1½ � Kn2½ � � � � Knn½ �

2
666664

3
777775

D1½ �
D2½ �
..
.

Dn½ �

2
666664

3
777775
¼

F1½ �
F2½ �
..
.

Fn½ �

2
666664

3
777775

(4)

where Kij½ � (i,j = 1,2,� � �, n) is a 6� 6 submatrix, Kii½ � depends on the
material properties of sphere i, and Kij½ � (i 6¼ j) depends on the inter-
actions between sphere i and sphere j; Di½ � are 6� 1 submatrices of
the basic unknowns of sphere i; Fi½ � are 6� 1 submatrices of the
generalized forces acting on sphere i.

In the sphere system, all the contact force and displacement con-
straints of spheres are caused by the neighboring spheres, and all con-
tact issues ultimately come down to the establishment of the simulta-
neous equilibrium equations. By using the minimum total potential
energy principle, the effects of external forces and internal interaction
among contacting spheres are both transferred into submatrices which
are added to the governing equation. By the same token, the submatri-
ces of the volume loading, inertial forces, point loading, displacement
constraint, and directional constraint can be easily obtained.

Problem of Boundary Condition in the Original SDDA

In the original SDDA, the sphere–sphere and the sphere–infinite plane
typesof contact are used toperformcontact detection, as shown inFigs.
1(a and b). However, in practical engineering simulations, they are not
appropriate for modeling the problem of sphere–convex contact, as
shown in Figs. 1(c and d). This incompleteness of the contact types in
theoriginalSDDAmight result in errors in the simulated results.

Sphere–Edge Contact

In this section, to solve the sphere–boundary condition problem, a
sphere–edge contact model is proposed, and the formulation is
deduced. The shape of the boundaries in the modified SDDA con-
sists of one or more fixed triangular planes. As shown in Fig. 2, any
kind of sphere–convex contact can be simplified into sphere–edge
contact. Assume that sphere i will contact edge AB in the next time
step. The radius of the sphere is Ri, and the coordinate of sphere cen-
ter is Ci (xci, yci, zci). Line segment L joints point P2 and the center
of sphere i. P2 x2; y2; z2ð Þ is the contact point.

Assume that point P1 (x1, y1, z1) on the surface of sphere i will
contact point P2, which is on edge AB in the next time step. The
coordinates of P1 are obtained by

P1 :

x1 ¼ xci þ VxRi

y1 ¼ yci þ VyRi

z1 ¼ zci þ VzRi

8>><
>>:

(5)

where Vx;Vy;Vzð Þ are the unit vectors ofCiP2
��!

.
Assuming that the displacement of point P1 is u1; v1;w1ð Þ, there-

fore the distance d between points P1 and P2 is obtained by

d2 ¼
x2 � x1 þ u1ð Þ
y2 � y1 þ v1ð Þ
z2 � z1 þ w1ð Þ

2
664

3
775

T x2 � x1 þ u1ð Þ
y2 � y1 þ v1ð Þ
z2 � z1 þ w1ð Þ

2
664

3
775

Fig. 1. Contact model: (a) sphere–sphere contact; (b) sphere–plane
contact; (c) sphere–convex contact; (d) sphere–convex contact
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d2 ¼
x2 � x1

y2 � y1

z2 � z1

0
BB@

1
CCA

T

� Dið ÞT Ti x1; y1; z1ð Þ� �T
8>>><
>>>:

9>>>=
>>>;

�
x2 � x1

y2 � y1

z2 � z1

0
BB@

1
CCA� Ti x1; y1; z1ð Þ� �

Dið Þ

8>><
>>:

9>>=
>>;

d2 ¼
x2 � x1
y2 � y1
z2 � z1

0
@

1
AT

x2 � x1
y2 � y1
z2 � z1

0
@

1
A� 2 Dið ÞT Ti x1; y1; z1ð Þ� �T

�
x2 � x1
y2 � y1
z2 � z1

0
@

1
Aþ Dið ÞT Ti x1; y1; z1ð Þ� �T Ti x1; y1; z1ð Þ� �

Dið Þ (6)

Normal Contact Submatrices of Sphere–Edge Contact

The normal distance dN between sphere i and the edge is the projec-
tion of d onto vector Vx;Vy;Vzð Þ and is obtained by

dN ¼
Vx

Vy

Vz

0
@

1
A

T x2 � x1 þ u1ð Þ
y2 � y1 þ v1ð Þ
z2 � z1 þ w1ð Þ

2
4

3
5 ¼ λ�

Vx

Vy

Vz

0
@

1
A

T u1
v1
w1

0
@

1
A

(7)

where λ ¼
Vx

Vy

Vz

0
@

1
A

T x2 � x1
y2 � y1
z2 � z1

0
@

1
A.

The potential energy of the normal spring between sphere and
edge is

Y
N
¼ pN

2
d2N ¼ pN

2
λ�

u1
v1
w1

0
@

1
A

T Vx

Vy

Vz

0
@

1
A

2
64

3
75

� λ�
Vx

Vy

Vz

0
@

1
A

T u1
v1
w1

0
@

1
A

2
64

3
75

Y
N
¼ pN

2
λ2 � pNλ

u1
v1
w1

0
@

1
A

T Vx

Vy

Vz

0
@

1
A

þ pN
2

u1
v1
w1

0
@

1
A

T Vx

Vy

Vz

0
@

1
A Vx

Vy

Vz

0
@

1
A

T u1
v1
w1

0
@

1
A (8)

where pN is the stiffness of the normal contact spring.
After rearrangement, Eq. (8) becomes

Y
N
¼ pN

2
λ2 � pNλ Dið ÞT VNð ÞT þ pN

2
Dið ÞT VNð ÞT VNð Þ Dið Þ (9)

where VNð Þ ¼ Vx Vy Vz 0 0 0
� �

.
By minimizing

Q
N , the normal contact submatrices of sphere–

edge contact are obtained

pN VNð ÞT VNð Þ ! Kiið Þ (10)

Fig. 2. Sphere–edge contact: (a) sphere–edge contact; (b) sphere–tetrahedron contact
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pNλ VNð ÞT ! Fið Þ (11)

Shear Contact Submatrices of the Sphere and Edge

The relative shear displacement ds between points P1 and P2 is the
projection of d to the edge, so d2s ¼ d2 � d2N . Assuming that the stiff-
ness of the shear spring between sphere i and edge is pS, the potential
energy of this shear spring is

Y
S
¼ pS

2
d2S ¼

pS
2
d2 � pS

2
d2N þ pS

2

x2 � x1
y2 � y1
z2 � z1

0
@

1
A

T

�
x2 � x1
y2 � y1
z2 � z1

0
@

1
A� pS Dið ÞT Ti x1; y1; z1ð Þ� �T x2 � x1

y2 � y1
z2 � z1

0
@

1
A

þ pS
2

Dið ÞT Ti x1; y1; z1ð Þ� �T Ti x1; y1; z1ð Þ� �
Dið Þ � pS

2
λ2

þ pSλ Dið ÞT VNð ÞT � pS
2

Dið ÞT VNð ÞT VNð Þ Dið Þ (12)

By minimizing
Q

S, the shear contact submatrices of sphere–
edge contact are obtained:

pS Ti x1; y1; z1ð Þ� �T Ti x1; y1; z1ð Þ� �� pS VNð ÞT VNð Þ ! Kiið Þ
(13)

pS Ti x1; y1; z1ð Þ� �T
x2 � x1

y2 � y1

z2 � z1

0
BB@

1
CCA� pSλ VNð ÞT ! Fið Þ (14)

Friction Force Submatrices of Sphere–Edge Contact

When the normal contact force between sphere and edge is com-
pressive, and the shear contact force is large enough to cause slid-
ing, the friction force is applied to the point P1 of the sphere. The
value of the friction force is obtained by

fS ¼ pNdp tanw (15)

where w is the sphere–edge friction angle and dP is the penetration
between sphere and edge at the end of the last time step.

Assuming that at the end of the time step, point P1 moves to

point P1*(x1*, y1*, z1*), and the projection vector of P1P1�
���!

on the
edge is marked as (Tx, Ty, Tz). They are obtained by

Tx ¼ x1� � x1 � Vxd2

Ty ¼ y1� � y1 � Vyd2

Tz ¼ z1� � z1 � Vzd2

8>><
>>:

(16)

where d2 ¼
Vx

Vy

Vz

0
BB@

1
CCA

T x1� � x1

y1� � y1

z1� � z1

0
BB@

1
CCA is the projection of P1P1�

���!
to

vector (Vx, Vy, Vz).
Assuming that the unit vector of (Tx, Ty, Tz) is (l, m, n), the

potential energy of the friction force, fS is obtained:

Y
f
¼ fS u1 v1 w1

� �
l m n

� �T

¼ fS Dið ÞT Ti x1; y1; z1ð Þ� �T l m n
� �T

(17)

If
Q

f is minimized, the friction submatrices of the sphere and
edge are obtained:

�f Ti x1; y1; z1ð Þ� �T l m n
� �T ! Fið Þ (18)

Implementation of Sphere–Edge Contact Detection

Contact Detection

As shown in Fig. 3, the convex consists of fixed planes F1 and F2,
andF is the line segment where fixed planeF1 intersects fixed plane
F2. Assume that sphere i will contact the convex in the next time
step, and point P1 is the contact point on the surface of the sphere.
Point P2, the contact point, is on the plane, and it is the projection of
the center of the sphere onto fixed plane.

In contact detection, it is first necessary to detect whether the
contact type is sphere–plane or sphere–edge. If point P2 is within in
the plane, this indicates that the contact type is sphere–plane con-
tact; otherwise, the sphere contacts edgeF.

Fig. 3. Sphere–convex contact

Fig. 4. Relation between point and line segment

© ASCE 04017110-4 Int. J. Geomech.
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To detect whether point P2 is in the fixed plane or not, the vector
method is adopted in this study. As shown in Fig. 4, along the route
A–B–C–A, point P2 is always on the right side of line segmentsAB,
BC, andCA, or, in other words, if point P2 has the same direction as

Fig. 5. Proposed algorithm

Fig. 6. Computed model of free falling body: (a) asymmetrical model;
(b) symmetrical model

Table 1.Mechanical Properties Used in the Numerical Examples

Parameter Value

Density (kg/m3) 2,700
Gravitational acceleration (m/s2) 9.8
Normal spring stiffness (GN/m) 1
Shear spring stiffness (GN/m) 0.25
Time step (s) 1� 10−5

Tensile strength (MPa) 0
Cohesion (MPa) 0
Friction angle (degrees) 30

Fig. 7. Simulation results for the asymmetrical example: (a) step =
20,000; (b) step = 235,000; (c) step = 1,200,000

Fig. 8. Simulation results for the symmetrical example: (a) step =
3,800; (b) step = 39,900; (c) step = 109,881

© ASCE 04017110-5 Int. J. Geomech.

 Int. J. Geomech., 2017, 17(12): 04017110 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f 
Su

ns
hi

ne
 C

oa
st

 o
n 

10
/0

6/
17

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



the vertex of the plane, point P2 is in the fixed plane. Take line seg-

ment AB as an example. Assuming that vectors V1
�! ¼ P2A

��!� AB
�!

and V2
�! ¼ CA

�!� AB
�!

, if V1
�! � V2

�!
> 0, vectors V1

�!
and V2

�!
are in

the same direction, and points C and P2 are at the same side of AB.
Otherwise, pointsC and P2 are on different sides ofAB.

After the detectionmentioned above, corresponding submatrices
will be obtained and added to the global equations, and the direction

vectors will be calculated to determine the position where the
springs are added to.

Calculation Process

The flowchart of the proposed algorithm is shown in Fig. 5.
The main calculation process for one time step is as follows:

Fig. 9. Velocity and time-step curve: (a) results of the asymmetrical example; (b) results of the symmetrical example

© ASCE 04017110-6 Int. J. Geomech.
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1. Determine sphere–plane contact.
2. Check whether the projection point of sphere center to plane is

in the plane or not. If not, check whether the contact type is
sphere–edge contact or not. If not, go to step (4).

3. Obtain the corresponding submatrices, calculating the direction
vectors from the contact point to the center of the sphere, and
establishing the simultaneous equations.

4. Solve the simultaneous equations.
5. Check whether the contact modes of all contact pairs remain

the same or not; if not, go to step (4) after revising the simulta-
neous equations.

6. Update the model data.

Verification Examples

The sphere–edge contact detection algorithm has been incorporated
into the original SDDA source code developed by Professor Yu-
Yong Jiao. This section presents four numerical examples calculated
by the modified SDDA program to demonstrate the reasonableness
and the accuracy of the proposed algorithm. Apart from the spheres,
all the boundaries in these examples are fixed. The common me-
chanical properties used in these examples are listed in Table 1.

Example 1: Sphere–Edge Contact

This example intends to show the correctness of the proposed algo-
rithm in simulating a simple physical problem. As shown in Fig. 6,
the sphere above the convex is allowed to fall under gravity and to
contact edgeAB of the convex. The computing model in Fig. 6(a) is
asymmetrical and the computing model in Fig. 6(b) is symmetrical.
When sphere and convex contact each other, the new contact algo-
rithm is expected to identify the contact type.

The simulated results of the asymmetrical example and the sym-
metrical one at different calculating steps are shown in Figs. 7 and
8, respectively, and the velocity and time-step curve of both exam-
ples is plotted in Fig. 9. As can be seen from the results, when the
time step t = 1,230,000, the sphere system of the asymmetrical
example can converge onto a stable state in the left convex, and
when time step t = 109,881, the sphere of the symmetrical example
can temporarily be stable on edge AB. These results indicate that
the proposed algorithm is correct.

Example 2: Sphere–Three-Dimensional Corner Contact

To further demonstrate what capability the proposed algorithm
has to deal with the complex sphere–edge contact problem, the
sphere–three-dimensional corner contact is simulated in this sec-
tion. As indicated in Fig. 10(a), the sphere is 0.2 m above the tet-
rahedron, which is made up of four equilateral triangles, and the
sphere is allowed to fall under gravity. If the sphere contacts
the tetrahedron, the sphere-edge contact type is determined by the
new algorithm.

The simulated results for different calculating steps are shown in
Fig. 10. The velocity and time-step curve and the displacement and

Fig. 10. Simulation results of sphere–tetrahedron contact at selected
calculated steps: (a) step = 0; (b) step = 107,004; (c) step = 151,004; (d)
step = 230,004

Fig. 11. Velocity and time-step curve
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time-step curve are plotted in Figs. 11 and 12, respectively. As can
be seen from the simulation results, the sphere system converges to
a stable state when the time step t = 107,004. However, because of a
rounding error in the computer, the sphere system begins to lose
balance when t = 151,004, and the sphere begins to fall from the top
of the tetrahedron.

Example 3: Spheres Falling into Containers

To further verify that the proposed algorithm can simulate contact
between multiple spheres and edges, the falling processes of a num-
ber of rigid spheres under the action of gravity are simulated, as
shown in Fig. 13. This spherical system, with no bonding strength,
consists of 48 spheres.

Fig. 14 shows the simulation results of this example. As it can be
seen from the results, the spheres contact the edge and fall into both
the containers. This case further demonstrates that the proposed
algorithm is physically viable and correct.

Example 4: Simulation of Rockfall

Rockfall is a serious natural hazard in mountainous areas and repre-
sents a major threat to infrastructure, transportation lines, and

people. To verify whether the proposed algorithm has the capability
to model this kind of problem, rockfall trajectories are simulated
with account taken for trees.

As shown in Fig. 15, the computational model consists of ten
spheres and is loaded by self-weight only. The slope is 10 m in
height and 45° in slope, and its surface consists of convexes and
concaves. Sphere elements simulated as clastic rocks are released
from the top of the slope. It is assumed that the trees on the slope
are also only acting as the boundaries of fixed planes, as shown in
Fig. 16.

The simulated results of the rockfall trajectories are plotted in
Fig. 17. It can be seen that the spheres fall under the gravity from
the top of the slope, and some of them impact trees and change their
trajectories. The falling path of the spheres is reasonable, and it con-
firms that the modified SDDA has the capability to simulate practi-
cal problem.

Fig. 12. Vertical displacement and time-step curve

Fig. 13. Computedmodel of example 3

Fig. 14. Simulation results: (a) step = 3,691; (b) step = 19,673
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Concluding Remarks

To make up for the incompleteness of contact type in the original
SDDA, a sphere–edge contact model is presented in this paper, and
a corresponding contact detection algorithm has been incorporated
into the original SDDA source code. The proposed sphere–bound-
ary contact detection algorithm includes two main loops, i.e., a
sphere–plane contact search and sphere–edge contact detection.
Contact detection begins with determining spheres that have
potential to be in contact with a fixed triangle or other polyhedral
planes. Then, contact pairs are further examined to judge whether
the contact type is sphere–plane contact or sphere–edge contact.
According to the geometrical information obtained from the sphere–
plane or sphere–edge contact pair, corresponding contact stiffness
submatrices and contact force vectors are derived for calculation. To
verify the proposed algorithm, four examples were calculated. The
numerical results demonstrate that the proposed sphere–boundary
contact model is effective in dealing with complex boundaries,

including planes, edges and corners, and the modified SDDA has the
capability to simulate practical contact problems.
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