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Abstract: The elastic compliance matrix is a key parameter for the stability analysis of engineering projects constructed in fractured rock
masses. In this study, the energy equivalence and the superposition methods were used to estimate the elastic compliance matrix of rock
masses containing persistent or nonpersistent fractures. For the energy equivalence method, two loading schemes were proposed to obtain the
values of S16 and S26 for nonsymmetric fracture sets. The superposition method was proposed to estimate the compliance matrix of rock mass
containing several fracture sets by summing the matrices of intact rock and each single fracture set. For a rock mass containing regular persis-
tent fracture sets, the derived analytical results were consistent with closed-form results. The analytical results were also compared with the
results of FEM for a rock mass containing two normally distributed nonpersistent fracture sets. The maximum deviations of the directional
Young’s modulus, shear modulus, and Poisson’s ratio were 7.9, 11.3, and 21.3% respectively. The limitations of the proposed methods are dis-
cussed in this paper.DOI: 10.1061/(ASCE)GM.1943-5622.0001035.© 2017 American Society of Civil Engineers.
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Introduction

In the analysis of engineering problems dealing with rock masses,
the influence of fractures should be considered because the strength
and deformation properties of rock masses depend on both the prop-
erties of the rock material (i.e., the continuous units of rock) and
those of the various structural geological features, specifically,
joints and fractures (Brady and Brown 2013). For highly fractured
rock mass, in which the fracture spacing is relatively small com-
pared to the structure scale, it is more convenient and practical to
treat the fractured rock mass as equivalent continuum material. In
addition to the in situ measurements (Bieniawski 1978), empirical
relationships (Palmström and Singh 2001; Barton 2002; Sonmez et
al. 2004; Zhang and Einstein 2004; Hoek and Diederichs 2006), and
numerical methods (Kulatilake et al. 1993; Min and Jing 2003;
Esmaieli et al. 2010; Chen et al. 2012; Gutierrez and Youn 2015) in
determining the effective elastic modulus of fractured rock mass,
analytical solutions have attracted intensive attention because they
are concise, clear, and straightforward.

The equivalent elastic compliance matrix of rock mass is often
derived through two frameworks: the energy equivalence method
and strain average method. The energy equivalence method is based
on linear elastic fracture mechanics, and it calculates the change of
strain energy due to the presence of fractures by taking into account
the energy-release rate related to the propagation of a crack and the
crack tip stress intensity factor. Because the fractured rock mass at
the representative elementary volume (REV) scale is considered as
an equivalent continuum material, the elastic-strain energy of the
material can be determined using the principle of continuum
mechanics, and it will be compared with the total energy obtained
from fracture mechanics to estimate the effective moduli or the
compliance matrix (Budiansky and O’Connell 1976; Kemeny and
Cook 1986; Huang et al. 1995). For the strain average method, the
compliance tensor of fractured rock mass is divided into two parts:
one relates to the compliance of intact rock without any fracture,
and the other is a correction term taking into account the influence
of fractures; the second part is called crack compliance matrix as in
Horii and Nemat-Nasser (1983). The crack compliance matrix is
estimated by averaging the strain of a REV for which the evaluation
of the relative displacement jumps across the fractures is required
(Horii and Nemat-Nasser 1983; Oda et al. 1984).

To calculate the fracture-induced energy increment or the frac-
ture displacement jump, different displacement models of persistent
and nonpersistent fractures were adopted. Fig. 1 shows persistent
and nonpersistent joints (Kim et al. 2007). For persistent fractures
the normal stiffness and shear stiffness of fractures were incorpo-
rated to represent the compressive resistance and shear resistance,
respectively. As a result, the model can be used to estimate the ap-
proximate elastic parameters for persistent rock masses under com-
pression. Huang et al. (1995), Amadei and Goodman (1981), Li
(2001), Agharazi et al. (2012) introduced some analytic results
based on the persistent fracture model. Furthermore, Wang and
Huang (2009) studied the failure mode and simulate the complete
prepeak and postpeak deformation of rock mass with sets of persis-
tent joints in three dimensions. For the nonpersistent fractures con-
tained in rock masses, the fractures are often assumed open (trac-
tion-free fractures in which the fracture stiffness is zero)
(Budiansky and O’Connell 1976; Kemeny and Cook 1986; Hu and
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Huang 1993) or closed (incompressible fractures in which fracture
stiffness is infinitely great) (Horii and Nemat-Nasser 1983;
Kachanov 1982; Cai and Horii 1992). For example, Budiansky and
O’Connell (1976) and Kemeny and Cook (1986) obtained equiva-
lent elastic moduli for isotropically distributed open cracks using
the energy equivalence method. Horii and Nemat-Nasser (1983)
found the same result in terms of the mean displacement jumps of
open cracks, and they studied the load-induced anisotropy of elastic
moduli by considering the closure effects and slip friction of the
crack surfaces. For nonpersistent fractures, few analytical studies
(Oda et al. 1984) took into account the fracture stiffness despite it
being considered one of the most important parameters affecting
rock mass properties (Goodman et al. 1968; Bandis et al. 1983).
Oda et al. (1984) incorporated the fracture stiffness of nonpersistent
fracture to estimate the equivalent compliance matrix within the
framework of fabric tensor theory. The displacement jump vector is
assumed parallel to the traction vector in Oda et al. (1984). On the
basis of fracture mechanics, Yang et al. (2016) proposed a displace-
ment model in which the stiffness of nonpersistent fractures and the
influence of the anisotropic elasticity of a rock mass are considered,
and they studied the directional equivalent elastic moduli of a frac-
tured rock mass. However, the compliance matrix was not studied
in Yang et al. (2016).

In this study, the compliance matrix of a nonpersistent fractured
rock mass was derived using both the energy equivalence method
and the strain average method by adopting the fracture displacement
model proposed in Yang et al. (2016). While using the energy
equivalence method, two new loading sets were proposed to deter-
mine the values of S16 and S26 of the compliance matrix.
Furthermore, a superposition method was proposed to estimate the
compliance matrix that is based on the elementary compliance mat-
rices of intact rock and a single fracture set. The proposed methods
were verified by comparing the results with those from the closed-
form expressions of a regular fractured rock mass and the FEM nu-
merical results of a nonpersistent fractured rock mass. The perform-
ance and limits of the proposed methods are discussed in the final
section of the paper.

Components of a Compliance Matrix in
Two Dimensions

Following Hooke’s law, the strain tensor, ɛij, is related to the stress
tensor, s kl, through an elastic compliance tensor, Sijkl, as

ɛij ¼ Sijkls kl i; j; k; l ¼ 1; 2ð Þ (1)

Eq. (1) can be written in the following matrix form:

ɛxx
ɛyy
�ɛzz
�ɛyz
�ɛxz
ɛxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

S11 S12 �S13 �S14 �S15 S16
S21 S22 �S23 �S24 �S25 S26
�S31 �S32 �S33 �S34 �S35 �S36
�S41 �S42 �S43 �S44 �S45 �S46
�S51 �S52 �S53 �S54 �S55 �S56
S61 S62 �S63 �S64 �S65 S66

0
BBBBBB@

1
CCCCCCA

s xx

s yy

�s zz

�t yz
�t xz
t xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(2)

As is well-known, for any two-dimensional (2D) plane stress
problem, the stresses s zz, t yz, and t xz are 0. Therefore, if the conju-
gate strains ɛzz, ɛyz, and ɛxz are not of interest, components in the
third, fourth, and fifth rows and columns of the compliance matrix
in Eq. (2) can be removed. For plane-strain problems, the compo-
nents in the third row and column of the matrix should be deter-
mined (Min and Jing 2003).

The “engineering” shear strains (e.g., g xy) are usually used in
Eq. (2), and the compliance matrix is symmetric. In the present
study, shear strains (e.g., ɛxy) were used to keep the tensor character-
istics of the strain components and to facilitate the transformation of
compliance matrix in different coordinate systems. Use of shear
strains indicates that S12 = S21, S16 = 2S61 and S26 = 2S62. Therefore,
only six components in Eq. (2) (S11, S22, S12, S16, S26, and S66) need
to be determined.

Methods of ComplianceMatrix Determination

Energy Equivalence Method

Estimation of Elastic-Strain Energy
A convenient basis for studying the effect of fractures on the
moduli of a rock mass is to consider the stored elastic-strain
energy. If an homogeneous and isotropic elastic body with a vol-
ume V is subjected to a stress s ij, then the elastic energy stored
in the intact body is U0V, where U0 is the elastic-strain energy
density of the intact body. For fractures introduced into the
body, the total elastic-strain energy will increase by an incre-
ment from U0V to U0V þ DR fracturesð Þ. Then the total elastic-
strain energy density, U, stored in the elastic body with fractures
can be written as

U ¼ U0 þ
XN
i¼1

r iDRi (3)

where N = number of fracture sets; r i = fracture density of the ith
fracture set, defined as the number of fracture central points per
square meter for a 2D problem; and DRi = increment of strain
energy due to the presence of a single fracture of the ith fracture set.
In general, the energy for a given fracture or fracture set depends on
the presence or absence of other fracture sets because the other frac-
ture sets alter the overall elastic properties.

Furthermore, the elastic-strain energy density stored in the
described equivalent continuum material on the REV scale can be
determined with Eq. (4); however, the determination of the REV is
beyond of the scope of this study. Eq. (4) is written as

�U ¼ 1
2
s ijɛij (4)

Fig. 1. Illustration of joint persistency (reprinted from RockMechanics
and Rock Engineering, “Estimation of Block Sizes for Rock Masses
with Non-Persistent Joints,” 40, 2007, 169-192, B. H. Kim, M. Cai,
P. K. Kaiser, and H. S. Yang, © Springer-Verlag 2006 with permission
of Springer)
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By equating Eqs. (3) and (4), the components in the equivalent
compliance matrix in Eq. (2) can be determined. The key step is cal-
culating the strain-energy change,DRi, in Eq. (3).

For an open fracture, Irwin (1957) argued that the strain-energy
increment (denoted as DR) due to a single fracture can be estimated
using the energy-release rate; this method was adopted by Kemeny
and Cook (1986) and Hu and Huang (1993) to derive the effective
moduli of a rock mass containing open fractures. However, if frac-
ture stiffness cannot be neglected, the deformation of fractures are
restrained because of fracture resistance, and the strain energy is
changed. The strain-energy change of a single fracture is calculated
by considering the additional strain energy in the fracture and in the
surrounding rock. The additional strain energy in a fracture is esti-
mated by multiplying the fracture stiffness and the fracture dis-
placement. In a similar manner, multiplying the stress acting on a
fracture surface by the fracture displacement, the additional strain
energy in surrounding rock is estimated.

The strain-energy increment is expressed as DR ¼ DRrn þ
DRfn þ DRrs þ DRfs, where DRrn and DRfn are the additional elas-
tic-strain energy in the rock and fracture, respectively, due to the
resolved normal stress, and DRrs and DRfs are the additional elastic-
strain energy in the rock and fracture, respectively, due to the
resolved shear stress. The strain energy is firmly related to the nor-
mal stiffness, Kn, and the shear stiffness, Ks, of rock fracture. By
assuming uniform displacement jumps along fracture, Yang et al.
(2016) argued that the normal displacement jump, d n, and shear dis-
placement jump, d s, can be determined using Eqs. (5a) and (5b),
respectively. When the fracture stiffness decreases to zero, the dis-
placement jump equals the average value for the open fractures.
From Eq. (5), the strain-energy change in the rock and fracture can
be obtained by Eq. (6) (Yang et al. 2016). It is noteworthy that the
coupling effects between normal (shear) stresses and shear (normal)
displacements of fractures are ignored. Eqs. (5a), (5b), and (6) are
written as

d n ¼ pa
Knpaþ E?

s n (5a)

d s ¼ pa
Kspaþ Ek

t s (5b)

DR ¼ pa2

Knpaþ E?
� s2

n þ
pa2

Kspaþ Ek
� t2s (6)

where a = half-length of fracture; sn and t s = normal and shear
stress acting on a fracture surface; and E? and Ek = effective elastic
moduli of a rock mass in the normal and shear directions of the frac-
ture, respectively. If the interaction between neighboring fractures
is neglected, E? and Ek are replaced by the Young’s modulus of the
intact, unfractured material, E0.

To determine the compliance matrix of rock mass containing
N fracture sets, the directional elastic moduli E?1;Ek1

� �
;…;

E?N ;EkN
� �

in Eq. (6) need to be estimated first.
If a far-field uniaxial stress, s , is applied, then Eq. (3) can be

written as

s 2

2E
¼ s2

2E0
þ
XN
i¼1

r iDRi (7)

where E = overall Young’s modulus in the loading direction of the
fractured material, which is determined by the Young’s modulus of
the uncrackedmaterial and by the characteristics of the cracks.

By substitutingEq. (6) into Eq. (7) and resolving the far-field stress,
s , into normal stress, s n, and shear stress, t s, on the fracture surface,
the directional elastic moduli can be estimated through Eq. (8). It is
noteworthy that the stress acting on the fracture surface resolved from
far-field stress is a rough approximation and can be accepted in the ho-
mogenization sense. The presence of fractures couldmagnify or shield
the local stress around the fractures. Eq. (8) iswritten as

1
E
¼ 1

E0
þ 1
2

XN
i¼1

r i �
pa2i 1þ cos2u ið Þ2

Knpai þ E?i
þ pa2i sin

22u i

Kspai þ Eki

" #
(8)

where u i = angle between the loading and normal directions of frac-
ture surface; u i = one-half the length of fracture; and E?i and Eki =
elastic moduli in directions perpendicular and parallel, respectively,
to the plane of the ith fracture set.

For a rock mass containingN fracture sets, there are 2N unknowns
in Eq. (8); that is, E?1;Ek1;…;E?N ;EkN . By applying the far-field
stress, s , in 2N specific directions (parallel and perpendicular to theN
fractures sets), 2N equations can be set up from Eq. (8), and the direc-
tional elastic modulus on the left side of Eq. (8) is then just the specific
directional elastic modulus E?1;Ek1;…;E?N ;EkN

� �
. Thus, the 2N

unknowns of E?1;Ek1;…;E?N ;EkN can be solved from 2N inde-
pendent equations.

Similarly, if a far-field shear stress, t , is applied, Eq. (3) can be
written as

t 2

2G
¼ t2

2G0
þ
XN
i¼1

r iDRi (9)

Following the same procedure, the shear modulus can be
expressed as follows:

1
G

¼ 1
G0

þ 2
XN
i¼1

r i �
pa2i sin

22u i

Knpai þ E?i
þ pa2i cos

22u i

Kspai þ Eki

 !
(10)

Determination of the Unknown Components in a
Compliance Matrix
In numerical studies, three independent boundary conditions, such
as Loading Sets 1–3 shown in Fig. 2, are enough to determine the
six unknown components of the 2D compliance matrix of an aniso-
tropic elastic body (Min and Jing 2003; Khani et al. 2013; Yang et
al. 2014). More boundary conditions, such as Loading Sets 4 and 5
in Fig. 2, are unnecessary. Strains of the other loading conditions
can be obtained through superposition of the strain results of
Loading Sets 1–3 because of the linear relationships between strains
and stresses in Eq. (2). However, three boundary conditions are not
enough for an analytical study using the energy equivalence method
because only one independent equation can be set up for each load-
ing setup. The relationship between the elastic-strain energy and the
stress components is not linear [e.g., Eq. (6)]. Therefore, the elastic-
strain energy in other loading sets is not a superposition of the strain
energy of Loading Sets 1–3. Hu and Huang (1993) used four load-
ing sets to determine the four in-plane elastic constants for symmet-
ric fracture distributions. For rock masses in which the fracture dis-
tribution is not symmetric, shear stress induces the variation of
normal strain and vice versa. Therefore, additional loading schemes
were used to estimate the values of S16 and S26. A previous numeri-
cal study showed that S16 and S26 can significantly influence the
directional elastic moduli of rock masses, and the neglect of S16 and
S26 leads to incorrect results [Fig. 4 in Yang et al. (2014)]. In the
present study, two new loading schemes, Loading Sets 5 and 6, in
Fig. 2, were proposed to determine S16 and S26.

© ASCE 04017126-3 Int. J. Geomech.
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The elastic-strain energy density stored in the fractured body can
be estimated from Eqs. (6), (7), and (9). The energy density can also
be obtained through Eq. (4) by considering the fractured body as an
equivalent elastic material. Using the elastic-strain energy density
formulas and activating different loading sets, the components of
the compliance matrix can be determined and the results expressed,
as in Eqs. (11)–(16) (see Appendix for details), which are written as

S11 ¼ 1
E0

þ 1
2

XN
i¼1

r ipa2i �
1þ cos2u ixð Þ2
Knpai þ E?i

þ sin22u ix

Kspai þ Eki

" #

(11)

S22 ¼ 1
E0

þ 1
2

XN
i¼1

r ipa2i �
1� cos2u ixð Þ2
Knpai þ E?i

þ sin22u ix

Kspai þ Eki

" #

(12)

S66 ¼ 1
2G0

þ
XN
i¼1

r ipa2i �
sin22u ix

Knpai þ E?i
þ cos22u ix

Kspai þ Eki

 !

(13)

S12 ¼ � �0
E0

� 1
2

XN
i¼1

r ipa2i �
sin22u ix

Kspai þ Eki
� sin22u ix

Knpai þ E?i

 !

(14)

S16 ¼
XN
i¼1

r ipa2i �
1þ cos2u ixð Þ � sin2u ix

Knpai þ E?i
� cos2u ix � sin2u ix

Kspai þ Eki

" #

(15)

S26 ¼
XN
i¼1

r ipa2i �
1� cos2u ixð Þ � sin2u ix

Knpai þ E?i
þ cos2u ix � sin2u ix

Kspai þ Eki

" #

(16)

To summarize, there are a total of 2N þ 6 unknowns, consisting
of the 2N directional moduli E?1;Ek1;…;E?N ;EkN

� �
that appear

in Eq. (8), and the six compliance parameters, Sij, that appear in
Eqs. (11)–(16). There are also, therefore, 2N þ 6 equations. The
compliance parameters, Sij, depend on the coordinate frame, and it
is straightforward to confirm that, because of the inclusion of the
angular terms on the right sides of Eqs. (11)–(16), these parameters
do transform in the appropriate manner between coordinate frames.

Strain Average Method

The compliance matrix is also obtained using the strain average
method, which focuses on the fracture-induced strain.

General Formulation
For an elastic body containing fractures, the equivalent compliance
matrix, Sijkl, in Eq. (1) can be thought of as consisting of two parts:
The first, Mijkl, depends on the elasticity of the matrix without any
cracks, while the second, Cijkl, represents the correction part related
to the existing fractures. The relationship is written as

Sijkl ¼ Mijkl þ Cijkl (17)

Using the divergence theorem, Horii and Nemat-Nasser (1983)
proved thatCijkl satisfies

Cijkls kl ¼ 1
V

ð
2S

1
2

uinj þ ujnið ÞdS (18)

where V = total volume of the cracked body; 2S = total surface area
of all fractures; ui and uj = components of a displacement vector;
and ni and nj = components of a unit vector normal to the crack
surfaces.

For each single rectilinear fracture, ni and nj are constant along
each surface. Hence, using the displacement jumps, Eq. (18) can be
expressed as

Fig. 2. Six loading sets for determining the six unknown components of the compliance matrix for 2D anisotropic material

© ASCE 04017126-4 Int. J. Geomech.
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Cijkls kl ¼ 1
2V

Xm Vð Þ

n¼1

S nð Þ d inj þ d jnið Þ (19)

where m Vð Þ = number of cracks in the studied body V; and S nð Þ =
area of the nth crack. (A kth crack among them Vð Þ cracks consists of
two surfaces having the same area of S kð Þ.)

Determination of the Unknown Components in a
Compliance Matrix
To express the term d inj þ d jni in Eq. (19), two coordinate systems
were defined and are shown in Fig. 3. The rotation matrix, a½ �, was
used to translate d n; d s d n ¼ d 10 ; d s ¼ d 20ð in the local coordinate
systemÞ to d i; d j in the global coordinate system. The rotation ma-
trix, b½ �, was used to express s n; t s sn ¼ s1010 ; t s ¼ s1020ð Þ in
Eqs. (5a) and (5b) from s ij in a global coordinate system. n½ �
denotes the unit normal vector of fracture surface.

a½ � ¼ aim0½ � ¼ ajm0½ � ¼ a110 a120

a210 a220

� �
¼ cosu �sinu

sinu cosu

� �
(20)

b½ � ¼ b i0k½ � ¼ b i0l½ � ¼ b 101 b 102
b 201 b 202

� �
¼ cosu sinu

�sinu cosu

� �
(21)

n½ � ¼ ni½ � ¼ n1
n2

� �
¼ cosu

sinu

� �
(22)

From the displacement jumps of fracture [Eqs. (5a) and (5b)],
the term d inj þ d jni in Eq. (19) becomes

d inj þ d jni ¼ niajm0d m0 þ njaim0d m0 ¼ niaj10 þ njai10ð Þd 10

þ niaj20 þ njai20ð Þd 20 ¼
pa

Knpaþ E?
niaj10 þ njai10ð Þsn

þ pa
Kspaþ Ek

niaj20 þ njai20ð Þt s

¼ pa
Knpaþ E?

niaj10 þ njai10ð Þb 10kb 10l

�

þ pa
Kspaþ Ek

niaj20 þ njai20ð Þb 10kb 20l

�
s kl (23)

For a rock mass containing N sets of regular fractures, substitu-
tion of Eq. (23) into Eq. (19), and cancellation of the stress term,
gives

Cijkl ¼
XN
m¼1

rmpa2m

� niaj10 þ njai10ð Þb 10kb 10l

Knpam þ E?m
þ niaj20 þ njai20ð Þb 10kb 20l

Kspam þ Ekm

" #

(24)

Substituting the terms of ni, aij0 , and b i0j [in Eqs. (20)–(22)] into
Eq. (24), the values of C1111; C2222; C1212 þ C1221; C1122, C1112 þ
C1121; andC2212 þ C2221 are equal to the corresponding terms of
S11; S22; S66; S12, S16; and S26 in Eqs. (11)–(16).

Superposition Method

The equivalent compliance tensor of a rock mass containing N frac-
ture sets can be considered as the approximate sum of the individual
equivalent compliance tensors of intact rock, Fracture Set 1,
Fracture Set 2,…, Fracture Set N. For each fracture set, the elemen-
tary compliance matrix in the local coordinate system is trans-
formed to the compliance matrix in the global coordinate system. It
is noteworthy that the interaction between different fracture sets is
ignored in this case. Kachanov (1993) stated that when the fracture
centers are randomly distributed, the competing effects of shielding
and amplification (of stress due to neighboring fractures) may be
balanced and cancel each other, even at high fracture densities. In
addition, for at least two orientation statistics—parallel and ran-
domly oriented fractures—the results were confirmed. Hence, the
approximation of noninteracting fractures remains accurate.

For example, for a fractured rock mass containing three sets of
persistent fractures (Fig. 4), the equivalent compliance matrix can
be obtained by summing the individual compliance matrices in the
global coordinate system. According to the results of Amadei and
Goodman (1981), the elementary compliance matrix of one set of
persistent fractures can be expressed as

Spersistent ¼

0
1

KnS
0

1
2KsS

0
1

2KsS

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(25)

In Fig. 4, S0set2 and S
0
set3 are the compliance matrices in the local

system x0y0 and follow the same form as Sset1. T is the transforma-
tion matrix. For a 2D problem, when the local coordinate system
x0y0 is rotated around the z0 ¼ zð Þ axis with angle u to the global
coordinate system xy (u = −w for Set 2 and u ¼ �p=2 for Set 3), T
has the following form:

T½ � ¼

cos2u sin2u 0 0 0 2 cosu sinu
sin2u cos2u 0 0 0 �2 cosu sinu
0 0 1 0 0 0
0 0 0 cosu �sinu 0
0 0 0 sinu cosu 0

�cosu sinu cosu sinu 0 0 0 cos2u � sin2u

0
BBBBBBB@

1
CCCCCCCA

(26)

For S1 of 0.5, S2 of 0.75, and S3 of 1.5 m and w of 45°, the direc-
tional Young’s modulus and shear modulus, determined using the

Fig. 3. Global coordinate system xy and local coordinate system x0y0

© ASCE 04017126-5 Int. J. Geomech.
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superposed compliance matrix (S in Fig. 4) and Eqs. (8) and (10),
were plotted and are shown in Fig. 5 to compare the two methods
(i. e., the superposition and energy equivalence methods). The frac-
ture densities in Eqs. (8) and (10) were calculated using Eq. (29) for
persistent fractures. The results show that the superposition method
gave the same results as the energy equivalence method. It can also
be seen that the shear modulus in Fig. 5(b) shows near symmetry,
but the Young’s modulus in Fig. 5(a) does not. The finding implies
that the symmetry of Young’s modulus may be lost for complex
fracture set distribution.

The elementary compliance matrix of one set of nonpersistent
fractures (Fig. 6) can be easily determined from Eq. (24) as follows:

Snonpersistent ¼

0
2rpa2

Knpaþ E
0

rpa2

Kspaþ E
0

rpa2

Kspaþ E

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(27)

According to the elementary compliance matrices of the nonper-
sistent fracture set [Eq. (27)] and persistent fracture set [Eq. (25)],
the equivalent compliance matrix of rock masses containing several
sets of persistent, nonpersistent, or mixed types of fractures can be
roughly estimated using the superposition method. This method
was used as described in the following section to determine the
equivalent compliance matrix of a rock mass containing two sets of
nonpersistent fractures.

Fig. 4. Determination of the compliance matrix of a fractured rock mass by superposition of each single matrix

(a)

(b)

  5GPa

  10GPa

  15GPa

30°

60°

90°

120°

150°

°0°081

From Eq. 8
From superposition method, Fig. 4 

  1GPa

  2GPa

  3GPa

  4GPa

  5

30°

60°

90°

120°

150°

180° 0°

From Eq. 10
From superposition method, Fig. 4

Fig. 5. Comparison of the elastic constants between the superposition
method and energy method (in gigapascals): (a) Young’s modulus;
(b) shear modulus
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Eq. (27) was written in three-dimensional (3D) form for matrix
transformation. However, it can only be used to evaluate the com-
pliance matrix of 2D plane-stress problems. The displacement
formula used in Eq. (24) is only valid for 2D fractures under
plane-stress conditions [Eq. (5)]. For plane-strain problems,
Young’s modulus, E, in Eq. (27) needs to be replaced with
E= 1� y 2ð Þ.

Verification Using a Closed-Form Solution for Rock
Masseswith Persistent Fractures

If the fracture length tends to infinity, the expressions in Eqs. (11)–
(16) are the results for the special cases of persistent fractures.

Huang et al. (1995) derived a closed-form expression of compli-
ance matrix for a rock mass with three sets of nonorthogonal frac-
tures that are persistent. The angle between the first two sets of
joints was g , and the third set of joints was orthogonal with the first
two joint sets. The closed-form solution showed that the third set of
joints had no influence on the in-plane elastic constants of the rock
mass. When the angle between the first two sets of joints was 90°,
the expression became the closed-form solution proposed by
Amadei and Goodman (1981) for orthogonal joint sets. The com-
parison presented in this section focuses on the in-plane elastic
constants.

Fig. 7 shows the schematic map of the two in-plane intersecting
fracture sets. The relationships between u ix, u iy, and g are

u ix ¼ p

2
6

g

2
; u iy ¼ 6

g

2
(28)

For the two fracture sets with spacing S in square L2, the fracture
densities are

r i ¼
L=S
L2

¼ 1
LS

¼ 1
2aiS

i ¼ 1; 2 (29)

Hence, expressions of S11, S22, S12, S16, and S26 in Eqs. (11),
(12), and (14)–(16) degenerated as those in Huang et al. (1995) did,
but S66, which corresponds to 1=Gyz in Eq. 14 in Huang et al.
(1995), did not. Validating the expression of S66 [Eq. (30)] is done by
setting w to 45° and g to 90�, and the obtained result of S66, as fol-
lows, is consistent with the results of Amadei and Goodman (1981):

S66 ¼ 1
2G0

þ
X2
i¼1

r ipa2i �
sin22u iy

Knpai þ E?i
þ cos22u iy

Kspai þ Eki

 !����
ai!1

¼ 1
2G0

þ sin2g
KnS

þ cos2g
KsS

(30)

Comparison with FEMResults for Normally
Distributed Nonpersistent Fractures

For a 2D nonpersistent fractured rock mass, the equivalent compli-
ance matrix obtained by FEM modeling (Yang et al. 2014) was
used in the present study to compare results from the derived
expressions presented in the previous sections. The geometric dis-
tribution of fractures used for the FEMmodeling, including fracture
spacing, dip direction, and fracture trace length, followed normal
distribution. Fig. 8 shows the FEM mesh and fracture distribution
(long, dark lines). The linear elastic constitutive models are used for
an intact rock and fracture. In the present study, the mean values of
fracture distribution parameters and the same mechanical parame-
ters for the intact rock and fracture are listed in Table 1. The derived
compliance matrices from the energy equivalence method and the
strain average method are the same and are written as

Fig. 6. Schematic map of rock mass containing one set of nonpersis-
tent fractures

Fig. 7. Schematic map of rock mass with two sets of fractures (adapted
fromHuang et al. 1995) Fig. 8. Generated fracture model of 12-m size mesh for FEM analysis
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S ¼

44:47 �20:10 �5 0 0 8:10
�20:10 47:98 �5 0 0 �11:20
�5 �5 20 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

4:05 �5:60 0 0 0 41:99

0
BBBBBB@

1
CCCCCCA

� 10�12 pa�1
� �

(31)

Using Eq. (27), the derived compliance matrix from the superpo-
sition method is

S ¼

40:46 �15:43 �5 0 0 6:07
�15:43 43:83 �5 0 0 �8:69
�5 �5 20 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3:03 �4:35 0 0 0 40:14

0
BBBBBB@

1
CCCCCCA

� 10�12 pa�1
� �

(32)

The directional elastic constants obtained using the energy
equivalence method [Eq. (31)], the superposition method [Eq.
(32)], and FEM (Yang et al. 2014) were plotted and are shown in
Fig. 9. The results show that the analytical results agreed well with
the FEM results. The maximum deviations of the results obtained
by the equivalent energy method and the FEMmethod for Young’s
modulus, shear modulus, and Poisson’s ratio were 5.8, 7.1, and
10.4%, respectively. As the interacting effect of the neighboring
fractures is ignored in the superposition method [Eq. (32)], the
superposition method predicts larger Young’s and shear moduli and
a smaller Poisson’s ratio than the FEM method and the equivalent
energy method [Eq. (31)]. The maximum deviation of the results of
Young’s modulus, shear modulus, and Poisson’s ratio obtained by
the superposition method from the FEM are 7.9, 11.3, and 21.3%,
respectively. The deviation is acceptable for engineering analysis in
practice. The analytical results obtained using the energy equiva-
lence method showed more significant anisotropic characteristics
than the results of FEMmodeling. This difference can be attributed
to the analytical method using the mean geometric data of the frac-
ture sets while the FEM modeling considers the randomness of the
distributions of fracture length and the dip angle such that the distri-
bution strengthens the isotropic properties of thematerial.

Summary and Conclusion

1. The energy equivalence method was adopted to estimate the
compliance matrix of a fractured rock mass in which the stiff-
ness of nonpersistent fractures was incorporated. Two loading
schemes were proposed to determine the components of S16
and S26 for nonsymmetric fracture sets. The derived compli-
ance matrix was consistent with the closed-form expression
(Huang et al. 1995; Amadei and Goodman 1981) for regular

persistent fracture sets, and it agreed well with the FEM model-
ing results for normally distributed nonpersistent fracture sets.

2. In the present study, the displacement jumps of a nonpersistent
fracture are different from the previous analytical studies. Normal

  10GPa
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  30GPa
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90°
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150°

180° 0°

Energy equivalence method, Eq. 31
Superposition method, Eq. 32 
FEM result (Yang et al. 2014)
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  10GPa

  15

30°

60°

90°

120°

150°

180° 0°

Energy equivalence method, Eq. 31
Superposition method, Eq. 32
FEM result (Yang et al. 2014)

  0.1

  0.2

  0.3

  0.4

  0.5

30°

60°

90°

120°

150°

180° 0°

Energy equivalence method, Eq. 31
Superposition method, Eq. 32
FEM result (Yang et al. 2014)

(a)

(b)

(c)

Fig. 9. Comparison of elastic constants between analytical and FEM
modeling results: (a) Young’s modulus (in gigapascals); (b) shear mod-
ulus (in gigapascals); (c) Poisson’s ratio

Table 1. Parameters of Intact Rock and Nonpersistent Fractures

Intact rock Fractures

Young’s modulus [E0 (GPa)] Poisson’s ratio (y0) Set Dip direction (degrees) Mean trace length (m) Fracture density (m−2)

Stiffness
(GPa/m)

Normal Shear

50 0.25 1 150 4 0.16 50 10
2 50 3 0.25 50 10

© ASCE 04017126-8 Int. J. Geomech.
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and shear stiffnesses are considered to be related with the displace-
ment jumps [Eq. (5)]. This fracture constitutive relationship has
been widely used in numerical simulations (Kulatilake et al. 1993;
Min and Jing 2003; Esmaieli et al. 2010; Wu and Kulatilake 2012;
Khani et al. 2013) but has not been adopted in an analytical study.
It is noteworthy that the formula of a fracture displacement jump
significantly influences the format of the compliance matrix. For
example, Oda et al. (1984) obtained a compliance matrix in which
S12 = S13 = S23 and S16 = S26 according to the assumption that the
jump vector was parallel to the traction vector. However, these
constraints may not hold if the adopted fracture jump formula
changes. It is, therefore, suggested that reasonable fracture jumps
for different kinds of discontinuities (bedding planes, joints, fis-
sures) and rock types should be determined before deriving a rock
mass compliance matrix.

3. In addition to the energy equivalence method and strain aver-
age method, a superposition method was proposed. The equiva-
lent compliance matrix of rock masses containing several sets
of persistent, nonpersistent, or mixed types of fractures can be
roughly estimated using the superposition method through the
superposition of the elementary compliance matrices of intact
rock (Sint in Fig. 4), persistent fracture set [Eq. (25)], and the
derived nonpersistent fracture set [Eq. (27)]. It is noteworthy
that the superposition method ignores the fracture interaction
effects between different fracture sets.

4. The simplified fracture model adopted in the analytical work does
not take into account the complexity of the real fracture shape
(Zhang and Einstein 2010), nonlinearity of fracture-deformation
behavior (Bandis et al. 1983), or shear dilation of real fractures.
The constant fracture stiffnesses assumed in this paper can be
used with a small load increment and give approximate estima-
tions for a large load increment (Huang et al. 1995). The derived
expressions will be improved in the future to estimate the compli-
ance matrix of a rock mass in the nonelastic range.

Appendix

Determination of ComplianceMatrix by Energy
Equivalent Method

Determination of S11

Loading Set 1 is activated. According to the theory of linear elas-
ticity (Brady and Brown 2013), the elastic-strain energy density
stored in the equivalent elastic body is

�U1 ¼ s

2
ɛxx ¼ s2

2
S11 (33)

The elastic-strain energy density determined, following the
theory of fracture mechanics [Eqs. (6) and (7)], is

U1¼ s2

2E0
þ
XN
i¼1

r iDRi;loadingset1

¼ s2

2E0
þs2

4

XN
i¼1

r ipa2i �
1þcos2u ixð Þ2
KnpaiþE?i

þ sin22u ix

KspaiþEki

" #
(34)

where DRi;loadingset1 = increment of strain energy due to the pres-
ence of a single fracture of the ith fracture set under Loading Set 1
in Fig. 2. The value of DRi;loadingset1 is calculated from Eq. (6), by

resolving the far-field stress, s , into the normal stress, s n, and
shear stress, t s, on the fracture plane, and u ix is the angle between
the x-axis and the normal direction of ith fracture set.

Combining Eqs. (33) and (34), component S11 can be solved
with Eq. (11).

Determination of S22

Loading Set 2 is activated. The elastic-strain energy density stored
in the equivalent elastic body is

�U2 ¼ s

2
ɛyy ¼ s2

2
S22 (35)

The elastic-strain energy density, determined using the theory
of fracture mechanics, is

U2 ¼ s 2

2E0
þ
XN
i¼1

r iDRi;loadingset2

¼ s 2

2E0
þ s 2

4

XN
i¼1

r ipai
2 � 1þ cos2u iyð Þ2

Knpai þ E?i
þ sin22u iy

Kspai þ Eki

" #

(36)

Combining Eqs. (35) and (36), component S22 can be solved
with Eq. (12).

Determination of S66

Loading Set 3 is activated. The elastic-strain energy density stored
in the equivalent elastic body is

�U3 ¼ tɛxy ¼ S66t
2 (37)

The elastic-strain energy density, determined following the
theory of fracture mechanics [Eqs. (6) and (9)], is

U3 ¼ t2

2G0
þ
XN
i¼1

r iDRi;loadingset3

¼ t2

2G0
þ t2

XN
i¼1

r ipa2i �
sin22u iy

Knpai þ E?i
þ cos22u iy

Kspai þ Eki

 !

(38)

Combining Eqs. (37) and (38), component S66 can be solved
with Eq. (13).

Determination of S12

Loading Sets 1, 2, and 4 are activated. The elastic-strain energy
density stored in Loading Set 4 is

�U4 ¼ s

2
ɛxx þ ɛyyð Þ ¼ S11 þ S12 þ S21 þ S22

2
s2 (39)

The difference between �U1 þ �U2 and �U4 is

�U1 þ �U2 � �U4 ¼ �S12s
2 (40)

Furthermore, the strain-energy density difference can be calcu-
lated as

© ASCE 04017126-9 Int. J. Geomech.
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U1 þ U2 � U4 ¼ �0
E0

s2

þ
XN
i¼1

r i � DRi;loadingset1 þ DRi;loadingset2 � DRi;loadingset4
� �

¼ �0
E0

s 2 þ s2

4

XN
i¼1

r ipa2i �
1þ cos2u ixð Þ2
Knpai þ E?i

þ sin22u ix

Kspai þ Eki

"

þ 1þ cos2u iyð Þ2
Knpai þ E?i

þ sin22u iy

Kspai þ Eki
� 4
Knpai þ E?i

#
(41)

Combining Eqs. (40) and (41), component S12 can be solved
with Eq. (14).

Determination of S16

Loading Sets 1, 3, and 5 are activated. The elastic-strain energy
density stored in Loading Set 5 is

�U5 ¼ 1
2
sɛxx þ tɛxy ¼ 1

2
S11s

2 þ S16st þ 2S61st þ 2S66t
2

� �
(42)

The difference between �U1 þ �U3 and �U5 is

�U1 þ �U3 � �U5 ¼ �S16st (43)

Furthermore, the strain-energy density difference can be calcu-
lated as

U1 þ U3 � U5

¼
XN
i¼1

r i � DRi;loadingset1 þ DRi;loadingset3 � DRi;loadingset5
� �

¼ st �
XN
i¼1

r ipa2i �
1þ cos2u ixð Þ � sin2u iy

Knpai þ E?i
� cos2u iy � sin2u ix

Kspai þ Eki

" #

(44)

Combining Eqs. (43) and (44), component S16 can be solved
with Eq. (15).

Determination of S26

Loading Sets 2, 3, and 6 are activated. Compared to Loading Set 5, the
only difference is attributed to the resolved normal and shear stresses
on the fracture surface.Therefore,S26 isobtainedwithEq. (16).
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