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Abstract: The structure of the layered rocks is characterized by oriented bedding planes, resulting in transverse isotropy in deformation and
strength. An elastoplastic constitutive model was proposed for transversely isotropic (TI) rock in this study. In the model, the generalized Hooke’s
lawwas adopted for the elastic behavior. For the plastic behavior, the yield criterion and plastic potential are formulated as functions of the general-
ized octahedral shear stress and the first invariant of stress tensor. A nonassociated flow rule and a stress-dependent hardening rule were adopted in
the model. The plastic model can be simplified to the Drucker-Prager model for isotropic rocks. Amethodology for the determination of model pa-
rameters was developed. The parameters can be determined by combining triaxial compression tests with torsion tests on specimens with different
bedding directions. The constraint on plastic parameters was theoretically identified. The proposedmodel and the parameter determinationmethod-
ology were applied to modeling the TI elastoplastic property of carbonaceous slate in triaxial compression. The results show that the model pro-
posed in this study can well describe the transverse isotropic elastoplastic property of the rock, and the parameter determination methodology is
simple and effective.DOI: 10.1061/(ASCE)GM.1943-5622.0001070.© 2017 American Society of Civil Engineers.
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Introduction

Anisotropic rocks are common on earth. Both metamorphic and sedi-
mentary rocks have inherent or structural anisotropy (Barton and
Quadros 2015). Among them, layered rocks are usually encountered
in tunneling, geoenergy exploration, CO2 underground disposal, and
underground space development. The structure of the layered rocks
is characterized by oriented bedding planes or foliations, resulting in
transverse isotropy in deformation and strength of the rocks. Because
they have similar properties within the bedding planes, the layered
rock masses can be treated as transversely isotropic (TI) material.
The experimental data show that the elastic modulus in the bedding
plane is approximately 1.5 times that in the direction perpendicular to
the bedding plane for many layered rocks (Amadei 1996). The defor-
mation and strength differ several times when the rocks are subjected
to different loading directions (Amadei 1996; Tien et al. 2006; Gao
et al. 2011; Liu et al. 2013; Shi et al. 2016). Because of the directional
nature of layered rocks, the determination of mechanical parameters
and in situ stress fields, and the estimation on the bearing capacity of
rock foundation and deformation of surrounding rocks around tun-
nels using the isotropic model will cause significant deviations from

the actual situations (Amadei 1996; Hefny and Lo 1999; Ding et al.
2006; Hakala et al. 2007; Bobet 2011; Zhang and Sun 2011; Vu et al.
2013b; Simanjuntak et al. 2016). Nevertheless, the TI constitutive
models for rocks have more parameters than the isotropic models,
which make the determination of parameters for TI constitutive mod-
els worthy of investigation. Therefore, it is of great theoretical and
practical value to propose an elastoplastic model for TI rocks and de-
velop a methodology for model parameter determination.

Many models have been proposed to describe elastoplastic stress-
strain responses of soils or granular materials (Nixon and Chandler
1999; Tsutsumi and Hashiguchi 2005; Anandarajah 2008; Lai et al.
2009; Muraleetharan et al. 2009; Yin et al. 2009; Kamrin 2010; Yin
et al. 2010; Zhu et al. 2010; Wang and Wong 2016, 2017) and rocks
(Huang and Khan 1991; Khan et al. 1991, 1992; Shao and Henry
1991; Vorobiev 2008; Chang et al. 2015; Shen and Shao 2016).
Generally, a single model was developed for a specific modeling pur-
pose. There is no one suitable way of describing all aspects of the elas-
toplastic behavior of thematerials. On the TI elastic behavior of rocks,
many research studies focused on the determination of elastic parame-
ters (Talesnick et al. 1995; Exadaktylos 2001; Gautam and Wong
2006; Chou and Chen 2008; Liu et al. 2013). There was some litera-
ture in which theoretical solutions of the stress and the displacement
fields were derived in TI rocks around an underground opening
(Hefny and Lo 1999; Bobet 2011; Zhang and Sun 2011; Vu et al.
2013a; Simanjuntak et al. 2016). Compared with the studies on TI
elastic property, the investigations on the TI plastic property of rocks
are limited. Xu et al. (2010) addressed the TI plastic property by vary-
ing the parameters in a Drucker-Prager (DP) model with loading
direction. Long et al. (2013) proposed a TI plastic model for fiber-
reinforced composites in strain space. Wang et al. (2014) used the DP
model to describe the plastic properties of both bedding planes in the
local coordinate system and intact rock in the global coordinate sys-
tem to describe the dependency of strength of the TI rocks on loading
direction in relation to bedding planes. Singh et al. (2015) extended
the strength criterion of an isotropic rock material based on the critical
state and proposed the anisotropic nonlinear strength criterion.

Previous studies primarily focusedon theTI elasticpropertyand the
strength of rocks, whereas few focused on the TI yielding and the plas-
tic flow of rocks. The TI plastic models proposed in previous studies
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separated the formulations for bedding planes and intact rock, which
make their applications limited to the simple stressing conditions under
which the formulations were derived. Because the number of parame-
ters for TI elastoplastic models is greater than those for isotropic mod-
els, parameter determination is oneof the important issues forTIplastic
models. Therefore, it is necessary to perform a study aimed at propos-
ingageneralizedplasticTImodelwitha reasonablenumberofparame-
ter anddevelopingmethods for theparameterdetermination.

In this study, such a generalized TI plastic model was proposed, in
which the yield criterion and plastic potential are formulated as func-
tions of the generalized octahedral shear stress and the first invariant
of stress tensor. A nonassociated flow rule and a stress-dependent
hardening criterion were adopted in the model. The generalized TI
plastic model can be simplified to the DP model for isotropic rocks.
For the sake of a complete TI elastoplasticity framework and the inter-
action between elastic and plastic behavior, the TI elastic model from
the generalized Hooke’s law also was presented in this study. Ameth-
odology for the determination of parameters for the TI elastoplastic
model was developed. The proposed model and parameter determina-
tion methodology were applied to modeling the TI elastoplastic prop-
erty of carbonaceous slate in triaxial compression. The results show
that the model proposed in this study can well describe the TI elasto-
plastic property of the rock, and the parameter determination method-
ology is simple and effective. Several other issues, including the plas-
tic flow directions, the interaction between elastic and plastic
parameters, and the dependency of strength on the loading direction,
were discussed in the light of themodel.

TI Elastoplastic Model

Elasticity

The TI elastic behavior could be described using the generalized
Hooke’s law, in which the strain increment is a linear function of
the stress increment. Assuming that the material property in the

bedding planes in which both s11 and s22 are acting is isotropic, as
shown in Fig. 1, the TI elasticity could be expressed in Eq. (1)
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where Ev = elastic modulus perpendicular to the bedding planes;
Eh = elastic modulus in the bedding planes; �vh = Poisson’s ratio
defined as the ratio of the strain in the isotropic plane over that in
the direction perpendicular to the isotropic plane; Gvh = shear mod-
ulus perpendicular to the bedding planes; Ds11, Ds22, Ds33, Dt23,
Dt31 Dt12 = increments in stress tensor components in a local coor-
dinate system; and Dɛe11, Dɛ

e
22, Dɛ

e
33, Dg

e
23, Dɛ

e
31 Dɛ

e
12 = increments

in elastic strain tensor components in a local coordinate system.

Plasticity

A plastic model consists of three parts: yield criterion, flow rule,
and hardening rule. The yield criterion is used to determine the
stress condition when plastic deformation starts to occur in material,
the flow rule is used to describe the plastic flow direction, and the
hardening rule determines the increment of plastic strain caused by
the increment of stress.Well-accepted plastic models for geomateri-
als include the Mohr-Coulomb model, the DP Prager model, the
Cam-clay model, the Lade-Duncan model, the Hoek-Brown model,
and the Matsuoka-Nakai model, among others. These models
describe the plastic property of geomaterials using a few parameters
with clear physical meaning. However, they are incapable or limited
capable of describing the TI plasticity of geomaterials.

In the study of the plasticity of metals, Hill (1950) extended the
Mises model to an anisotropic plastic model for metals. In Hill’s
model, the yield criterion was formulated as a function of general-
ized octahedral shear stress. The yield function was expressed in
Eq. (2) (Hill 1950)

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F s yy � s zzð Þ2 þ G s zz � s xxð Þ2 þ H s xx � s yyð Þ2 þ 2Lt2yz þ 2Mt2zx þ 2Nt2xy

q
� D (2)

where s xx, s yy, s zz, t yz, t zx, and t xy = stress tensor components in a
global coordinate system; and D, F, G, H, L, M, and N = model

parameters. If the model parameters are identical to unity, Hill’s
model will be reduced to theMises model.

11σ  12

13  22σ

21  

23  

33σ
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31τ  

1

2

3

τ
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τ
τ

τ

Fig. 1. Stress tensor components acting on an element of transversely
isotropic material: s11 and s22 in isotropic planes 1 and 2, and s33 in
the direction perpendicular to the plane
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Yield Criterion

As is well documented, the yield of geomaterials is depend-
ent on not only the shear stress but also the confining pres-

sure or mean stress. Therefore, to describe the yield of ani-
sotropic geomaterials, Hill’s yield criterion is extended to
Eq. (3)

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F s yy � s zzð Þ2 þ G s zz � s xxð Þ2 þ H s xx � s yyð Þ2 þ 2Lt2yz þ 2Mt2zx þ 2Nt2xy

q
� b I1 � D (3)

where I1 = first invariant of the stress tensor; and b and D = model
parameters dependent on friction angle and cohesion at yielding.
Also, parameters L,M, andN are dependent on F,G, andH.

For TI rocks, assuming that the plane in which both s11 and
s22 are acting is an isotropic plane, Eq. (3) can be simplified as
Eq. (4)

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F s22 � s33ð Þ2 þ F s33 � s11ð Þ2 þ H s11 � s22ð Þ2 þ 2Lt 223 þ 2Lt231 þ 2Nt 212

q
� b I1 � D (4)

The yield surface of the model is a convex angle cone surface
with a nonequal intercept elliptic section. Figs. 2(a and b) show the

yield lines of the yield surface in the meridian plane and p plane in
the s11-s22-s33 space, respectively, along with those for the DP
and Hill models. The extended Hill’s model is capable of describing
the dependency of yield on both loading direction and confining
pressure. When F = H = 1 and L = N = 0, the extend Hill’s model is
reduced into the DPmodel.

Specifically, in the triaxial compression test, all shear stress
components turn to zero, and the expression of the model becomes
Eq. (5)

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F s 22 � s33ð Þ2 þ F s 33 � s11ð Þ2 þ H s 11 � s22ð Þ2

q

�b I1 � D (5)

In the torsion test of a horizontal bedding specimen, all normal
stress components and the shear stress components t 23 and t31 turn
to zero, and the model turns to the expression

g sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Nt212

q
� b I1 � D (6)

Flow Rule

The flow rule is used to describe the plastic flow direction.
Generally

dɛpij ¼ dλ
∂f sð Þ
∂s ij

(7)

where dl = plastic factor; and f = potential function. If f is identical
to g, then the flow rule is associated; if f is not identical to g, then the
flow rule is nonassociated. Generally, f is not identical to g for geo-
materials (Zheng and Kong 2010). Therefore, the potential function
can be expressed as Eq. (8)
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Fig. 2. Yield lines of the yield surfaces in the meridian plane (a) and p
plane in the s11-s22-s33 space and (b) for DP, Hill, and extended Hill
models
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f sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F s 22 � s33ð Þ2 þ F s 33 � s11ð Þ2 þ H s 11 � s22ð Þ2 þ 2Lt223 þ 2Lt 231 þ 2Nt212

q
� aI1 (8)

where a = model parameter related to dilation angle and is expressed
as (SIMULIA 2006)

a ¼ sin wffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ sin2w

p (9)

where w = dilation angle. For the associated plastic flow a ¼ b ,
and for the nonassociated plastic flow, a 6¼ b .

Hardening Rule

The hardening rule determines the increment of plastic strain caused
by the increment of stress. Usually volumetric plastic strain is
related to mean stress for volumetric hardening, and shear plastic
strain is related to deviatoric stress for shear hardening. In this
study, the volumetric hardening was adopted.

It should be noted that the proposed model defines the properties
of TI rocks in the local coordinate system. In the applications in
which the global coordinate system is different from that of local
coordinate system, the problem is solved in the local coordinate sys-
tem and the solution in the global coordinate system can be obtained
with the transition of the two coordinate systems.

The model is applicable to describing shear plastic deformation of
TI rocks. For describing the tensile plastic deformation of TI rocks,
different yielding criterion and plastic flow rule would be suggested.

Methodology for Parameter Determination

Elastic Parameters

The elastic parameters can be determined by combining triaxial
compression tests of horizontal and vertical bedding specimens
with a torsion test. Fig. 3 shows the local coordinate systems for
horizontal and vertical bedding specimens used in the triaxial com-
pression tests. A triaxial compression test of a horizontal bedding
specimen in the elastic loading or unloading process would give the
values ofEv and �vh, whereas a triaxial compression test of a vertical
bedding specimen in the elastic loading or unloading process
would give the values of Eh and �hh. Fig. 4 shows the schematic

diagram of the torsion test for determination of Gvh. The torque is
applied in the direction perpendicular to bedding planes in a hori-
zontal bedding specimen. In the elastic domain, the value of the
shear modulus of the rocksGvh will be determined.

Determination of Ev and Vvh

For a horizontal bedding specimen in the local coordinate system
shown in Fig. 3(a), the constitutive equation can be simplified from
Eq. (1) as

Dɛev

Dɛeh

" #
¼

1
Ev

� 2�vh
Ev

� �vh
Ev

1� �hhð Þ
Eh

2
6664

3
7775

Ds v

Dsh

" #
(10)

When conventional triaxial compression tests are performed, the
confining pressure will be a constant, namely,Ds h ¼ 0, and the fol-
lowing equations can be obtained using Eq. (10):

Ev ¼ Ds v

Dɛev
(11)

�vh ¼ �Dɛeh
Dɛev

(12)

Determination of Eh and Vhh

For the vertical bedding, in the local coordinate system shown in
Fig. 3(b), the constitutive equation becomes

Dɛev

Dɛeh2

Dɛeh1

2
664

3
775 ¼

1
Ev

� �vh
Ev

� �vh
Ev

� �vh
Ev

1
Eh

� �hh
Eh

� �vh
Ev

� �hh
Eh

1
Eh

2
666666664

3
777777775

Ds v

Dsh2

Dsh1

2
664

3
775 (13)

The confining pressure is constant in a triaxial compression test,
namely, Ds v ¼ Ds h2 ¼ 0; thus, the following equations can be
obtained using Eq. (13):

Eh ¼ Dsh2

Dɛeh1
(14)

2 (h)

3 (v)

1 (h) 

3 (h1)

1 (v) 

2 (h2)
(a) (b)

Fig. 3. Local coordinate systems for the horizontal (a) and vertical
(b) bedding specimens

TT

φ

Fig. 4. Schematic diagram of the torsion test to determineGvh
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�hh ¼ �Dɛeh2
Dɛeh1

(15)

When a cylindrical specimen shown in Fig. 3(b) is tested in the
triaxial compression test, ɛeh2 and ɛ

e
v cannot be measured separately

and only the radial elastic strain ɛer can be measured. Because radial
strain is defined as the average ratio of the specimen cross section
before and after deformation, a relationship between radial strain
and ɛh2 and ɛv is found as

p r 1þ ɛh2ð Þ � r 1þ ɛvð Þ� � ¼ p r 1þ ɛrð Þ½ �2 (16)

that is

Dɛr ¼ Dɛh2 þ Dɛvð Þ=2 (17)

Dɛer ¼ Dɛeh2 þ Dɛev
� �

=2 (18)

Dɛpr ¼ Dɛph2 þ Dɛpv
� �

=2 (19)

In a triaxial compression test, Ds v ¼ Ds h2 ¼ 0, and the follow-
ing equation can be obtained using Eq. (13):

Dɛev ¼ � �vh
Ev

� Dsh1 (20)

The following equation can be obtained combining Eqs. (18)
and (20):

Dɛeh2 ¼ 2Dɛer þ
�vh
Ev

� Dsh1 (21)

The following equation is obtained when Eq. (21) is substituted
into Eq. (15):

�hh ¼ � 2Dɛer
Dɛeh1

� �vh � Eh

Ev
(22)

Therefore, Ev and �vh can be determined using the test of a hori-
zontal bedding specimen, and Eh and �hh can be determined using
the tests of both horizontal and vertical bedding specimens as
expressed in Eqs. (14) and (22).

Determination of Gvh

A torsion test of a horizontal bedding specimen can be used to deter-
mineGvh as shown in Fig. 4. The shear modulusG can be calculated
using the shear formula of Hooke’s law when the material is in
torsion

Gvh ¼ TL
Ipf

(23)

whereGvh = shear modulus perpendicular to the isotropic plane; T =
applied torque; L = length of the specimen; f = rotation angle; and
Ip = polar moment of inertia.

Plastic Parameters

Constraint on Plastic Parameters

Fig. 5 shows a plane element of anisotropic material subjected to
pure shear stress t xy, at which the yielding of material starts. With
Eq. (3), it is obtained that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N t xyð Þ2

q
¼ D (24)

When the coordinate system is rotated 45° clockwise, the princi-
pal stress space is obtained, in which the principal stresses are t 12
and�t12, respectively. Substituting the stress components into Eq.
(3), it is obtained that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F þ Gþ 4Hð Þ t xyð Þ2

q
¼ D (25)

Comparison of Eq. (24) with Eq. (25) gives

2N ¼ F þ Gþ 4H (26)

Fig. 6. Failure of specimens in the triaxial compression (a) and torsion
(b) tests

12τ  

1

2

12τ  

12τ  

12τ  

–

2’

1‘

Fig. 5. Transformation of stress states of a plane element of a material
subjected to pure shear stresses at which yielding starts to occur: 1 and
2 are coordinate axes before transformation; 10 and 2 are coordinate
axes after transformation
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In the samemanner, the following relations will be obtained:

2L ¼ 4F þ Gþ H (27)

2M ¼ F þ 4Gþ H (28)

The relations expressed by Eqs. (26)–(28) lay the constraint on
the plastic parameters for the TI plastic model.

Determination of F, H, and N

For a triaxial compression test on a horizontal bedding specimen, as
shown in Fig. 3(a), s11 ¼ s22; therefore, the following equations
are derived from the plastic potential:

∂f sð Þ
∂s11

¼ ∂f sð Þ
∂s22

¼ F
f sð Þ s11 � s33ð Þ � a (29)

∂f sð Þ
∂s33

¼ � 2F
f sð Þ s11 � s33ð Þ � a (30)

The radial plastic strain increment is expressed as

dɛpr ¼ dɛp11 ¼ dɛp22 ¼ dλ
∂f sð Þ
∂s 11

¼ dλ
F

f sð Þ s 11 � s33ð Þ � a

� �
(31)

and the axial plastic strain increment is expressed as

dɛpa ¼ dɛp33 ¼ dλ
∂f sð Þ
∂s33

¼ dλ � 2F
f sð Þ s 11 � s33ð Þ � a

� �
(32)

Regarding on the test of the vertical bedding specimen, as shown
in Fig. 3(b), s22 ¼ s33, so

∂f sð Þ
∂s 11

¼ F þ H
f sð Þ s11 � s 33ð Þ � a (33)

∂f sð Þ
∂s22

¼ � H
f sð Þ s 11 � s33ð Þ � a (34)

∂f sð Þ
∂s33

¼ � F
f sð Þ s 11 � s33ð Þ � a (35)

The radial plastic strain increment is expressed as

dɛpr ¼
1
2

dɛp22 þ dɛp33
� � ¼ 1

2
dλ

∂f sð Þ
∂s22

þ dλ
∂f sð Þ
∂s33

	 


¼ dλ �F þ H
2f sð Þ s11 � s33ð Þ � a

� �
(36)

and the axial plastic strain increment is expressed as

dɛpa ¼ dɛp11 ¼ dλ
∂f sð Þ
∂s11

¼ dλ
F þ H
f sð Þ s 11 � s 33ð Þ � a

� �
(37)

The plastic strains could be obtained by subtracting the elas-
tic strains from the strains. The parameter a is determined in tri-
axial compression tests on the specimens under different

Fig. 7. Deviatoric stress versus axial and radial strain relations of hori-
zontal (a) and vertical (b) bedding specimens in triaxial compression
under the confining pressure of 5MPa

Fig. 8. Torque versus rotation angle relation of a horizontal bedding
specimen in the torsion test
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confining pressures. The parameters for the plastic potential, i.
e., F, H, and N, could be determined by combining Eqs. (31),
(32), and (36).

Along with using the relation of Eq. (26), parameter N can also
be determined using Eq. (5). The shear strain increment could be
expressed as

dɛp12 ¼ dλ
∂f sð Þ
∂s 12

¼ dλ
4Ns12

f sð Þ
� �

(38)

Eq. (38) could be used to verify the parameters determined using
the previously described method.

Yield Parameters

Two parameters in the yield function, b and D, can be obtained by
determining the yield stresses under different confining pressures in
the triaxial compression tests, whereas the values of the other two
parameters i.e.,F andH, are identical to those determined in the pre-
vious section.

Hardening Parameters

The relationship between plastic strain and stress can be prescribed
as a function or a tabulated data set (SIMULIA 2006). In this study,
the latter method is adopted.

Verification of the Model andMethodology

Test Methods

In this study, the conventional triaxial compression tests were
performed using an RLW-500 microcomputer-controlled rock

Table 1. TI Elastic Parameters of Carbonaceous Slate

Parameter Value

Ev=MPa 46,095
Eh=MPa 64,500
�vh 0.35
�hh 0.16
Gvh=MPa 18,534

Fig. 9. Deviatoric stress versus axial and radial plastic strain relations
of horizontal (a) and vertical (b) bedding specimens in triaxial compres-
sion under the confining pressure of 5MPa
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Fig. 10. Relations between mean stress and plastic factor for the hori-
zontal (a) and vertical (b) bedding specimens
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triaxial testing system. The system has the following parameters:
a maximum axial load of 1,000 kN, with an accuracy of 1%; a
maximum radial pressure of 50 MPa, with an accuracy of 62%;

and a maximum axial deformation of 10 mm and a maximum ra-
dial deformation of 5 mm, with accuracies of60.5%.

Carbonaceous slate specimens were made out of core samples
from the rock mass around the Muzhailing Tunnel in northwestern
China. The core samples were prepared carefully to obtain the hori-
zontal and vertical beddings specimens. The diameter of the speci-
mens was 50 mm and the height was 100mm.

In triaxial compression tests, the confining pressure was
5 MPa. Figs. 3 (a and b) illustrate the specimens with bedding
planes. In the test, the loading rate of confining pressure was
kept at 0.05 MPa/s, and the axial load was 100 N/s. Unloading
and reloading processes were performed in the tests to determine
the elastic parameters of the carbonaceous slate. It was assumed
that the specimens exhibited elastic behavior in unloading or
reloading processes. In the torsion test, a K-50 torsion testing

Fig. 11. Comparison between tested and predicted deviatoric stress versus plastic strain (a) and strain (b) relations of horizontal bedding specimen in
triaxial compression under the confining pressure of 5MPa

Table 2. TI Plastic Parameters of Carbonaceous Slate

Parameter Value

b 0.13
D/MPa 11
a 0.17
F 0.59
H 0.37
N 1.33

© ASCE 04017149-8 Int. J. Geomech.
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system was used. Special molds were designed and manufac-
tured to mount the specimen on the equipment. A specimen with
horizontal bedding was used in the test, as shown in Fig. 4. The
molds and the specimens were spliced using high-strength ep-
oxy resin. Fig. 6 shows the failure of specimens in the triaxial
compression and torsion tests.

Test Results

Fig. 7(a) shows the deviatoric stress versus axial and radial
strain and relations of the horizontal specimen under a confining
pressure of 5 MPa. It shows that the sample experienced strain-
hardening behavior before the peak and then strain-softening
behavior after the peak. However, the strain-hardening behavior

is of interest in this study. The specimen failed at the deviatoric
stress of 131 MPa, and the residual strength of the specimen is
40 MPa.

Fig. 7(b) shows the deviatoric stress versus axial strain and radial
strain relations of the vertical bedding specimens under a confining
pressure of 5 MPa. It shows that a significant strain-softening phe-
nomenon occurs in both axial and radial directions. The specimen
failed at the deviatoric stress of 188 MPa, and the residual strength
of the specimen is 56MPa. Both peak strength and residual strength
of the vertical bedding specimen are higher than those of the hori-
zontal bedding specimen.

Fig. 8 shows the torque versus rotation angle relation in the
reloading process in the torsion test. A linear relationship between
the torque and rotation angle appears in the torque up to 12 kN · m.

(a)

(b)

Fig. 12. Comparison between tested and predicted deviatoric stress versus plastic strain (a) and strain (b) relations of vertical bedding specimens in
triaxial compression under the confining pressure of 5MPa

© ASCE 04017149-9 Int. J. Geomech.
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It was supposed that the specimen exhibited elastic behavior in the
range of shear stress applied in the test.

Determination of Parameters

To determine the elastic and plastic parameters, the strain should be
decomposed into elastic and plastic strains. In this study, it is
assumed that an unloading process is reversible and the specimens
exhibit elastic behavior in an unloading process. It is also assumed
that the elastic modulus is the same in both unloading and reloading
processes for TI rocks.

Elastic Parameters

From the triaxial compression tests, Ev and vvh were determined
using the relations in the unloading processes with Eqs. (11) and
(12), respectively.Eh and vhhwere determined in the unloading proc-
esses with Eqs. (14) and (15), and Gvh was determined using Eq.
(23). The determined elastic parameters are shown in Table 1. The
carbonaceous slate is featured with TI property. The anisotropy ratio
for elasticity, defined as the ratio of Eh over Ev, is 1.4.

Plastic Parameters

Using the elastic parameters in Table 1, the axial and radial elastic
strains of the horizontal and vertical specimens were calculated
using Eq. (1) in the triaxial compression tests. In this manner, the
plastic strains of the specimens in axial and radial directions were
calculated.

Fig. 9(a) shows the deviatoric stress versus axial and radial plastic
strain relations of the horizontal specimens. With the increase of the
deviatoric stress, both the axial and radial plastic strains increase with
an increase in the deviatoric stress. It is noted that the axial and radial
plastic strain is nearly the same for this specimen in the test, although
the axial strain is higher than radial strain for a specified deviatoric
stress, as shown in Fig. 7(a). It could be induced because the elastic
modulus perpendicular to the bedding planes, Ev, is lower than the
elastic modulus in the bedding planes, Eh. Fig. 9(b) shows the devia-
toric stress versus axial and radial plastic strain of the vertical bedding

specimen. The axial and radial plastic strains both increase with
deviatoric stress, and the strain rate increases with the increase of the
deviatoric stress. When approaching the peak strength, the rates of
axial and radial plastic strains attained the maximum values.

Figs. 10(a and b) show the relations between mean stress and
plastic factor for the horizontal and vertical bedding specimens.
These two relations are used to specify the hardening property of
the rock specimens.

As measured by the tests, the internal friction angle of the carbo-
naceous slate is 32.5°; thus, a was determined as 0.17 according to
Eq. (9). Then F and H were determined with Eqs. (31), (32), and
(36). Finally, N was calculated with Eq. (26). The resulting plastic
parameters of the carbonaceous slate of the constitutive model are
shown in Table 2. The anisotropic ratio for plasticity, which is
defined as the ratio of F over H, is 1.6. The specimen shows the
strong dependency of plastic property on the loading direction.

Comparison between Test Data and Model Prediction

Fig. 11 shows the comparison between tested and predicted devia-
toric stress versus plastic strain and strain relations of the horizontal
bedding specimen in the triaxial compression test. Fig. 12 shows the
comparison between tested and predicted deviatoric stress versus
plastic strain and strain relations of the vertical bedding specimen in
the triaxial compression test. It can be seen from the comparisons
that the model predictions are in good agreement with the test
results, indicating that the existing model and the model parameters
can well describe the TI behavior of carbonaceous slates.

Discussions

Plastic Flow Directions

Fig. 13 compares the volumetric plastic strain versus axial plastic
strain relations of the horizontal and vertical bedding specimens. A
compressive strain is positive, and a tensile strain is negative. Given
a certain axial plastic strain, the volumetric plastic strain of the

Fig. 13. Volumetric plastic strain versus axial plastic strain relations of horizontal and vertical bedding specimens in triaxial compression under the
confining pressure of 5MPa

© ASCE 04017149-10 Int. J. Geomech.
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horizontal bedding specimen is much smaller than that of the verti-
cal bedding specimen. With the increase of the axial plastic strain,
the volumetric plastic strain increases gradually.

Potential has been used to describe the flow direction of rock in
the constitutive modeling of rock behavior. It is significant to com-
pare the potentials of the horizontal and vertical bedding specimens.
In Figs. 14(a and b), the directions of plastic flow are represented
using some vectors. The locations of the vectors in stress space are
defined by the stress states. The directions of the vectors are defined
by the ratio of plastic shear strain and plastic volumetric strain
increments. The inclined angles of the vectors are usually termed as
dilation angle. The dilation angle increases with the stresses applied
on specimens. At an identical stress state, the dilation angle for the
vertical bedding specimen is higher than that of the horizontal

bedding specimen, which means that the plastic potential is depend-
ent on the loading direction.

Elastic and Plastic Parameters Interaction

In the earlier analysis, the plastic parameters were determined based
on the decomposition of strains. Variations in elastic parameters
would alter the parameters for plasticity. It is interesting and useful
to investigate the sensitivity of plastic parameters to the variation of
elastic parameters. The effect of the variations in elastic parameters
Ev and vvh on the plastic potential is discussed using the test data of
the horizontal bedding specimen. The results are shown in Fig. 15,
which shows that the dilation angle increases with both the elastic
modulus Ev and Poisson’s ratio vvh.

Φ

               Mean stress/MPa,
Plastic volumetric strain increment

   
 D

ev
ia

to
ric

 st
re

ss
/M

Pa
,

Pl
as

tic
 sh

ea
r s

tra
in

 in
cr

em
en

t

Plastic flow direction
No plastic volumetric strain flow
No plastic shear strain flow

dialation angle

               Mean stress/MPa,
Plastic volumetric strain increment

   
 D

ev
ia

to
ric

 st
re

ss
/M

Pa
,

Pl
as

tic
 sh

ea
r s

tra
in

 in
cr

em
en

t

Plastic flow direction
No plastic volumetric strain flow
No plastic shear strain flow

Φdialation angle

(a)

(b)

Fig. 14. Plastic strain increments in the stress space for horizontal (a) and vertical (b) bedding specimens in triaxial compression under the confining
pressure of 5MPa
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Dependency of Strength on Loading Direction

Quite a few studies (Tien et al. 2006; Singh et al. 2015; Shi et al.
2016) have been performed to investigate the dependency of triaxial
compression strength on loading direction. It was found that the
strength varies with the loading direction in a nonlinear manner. In
this section, the proposed model was used to investigate the depend-
ency with the triaxial compression test data on phyllite reported in
Singh et al. (2015). The axial stresses at failure of the specimens
with different dip angles of the bedding plane in triaxial compres-
sion tests with the confining pressures of 5 and 30MPa are tabulated
in Table 3, in which u is the inclination angle of the normal direc-
tion of the bedding planes.

Fig. 16 shows the coordinate systems associated with the spec-
imen in triaxial compression tests. The stress components in the

coordinate system 1'2'3 were obtained using the stress transfor-
mation formula

s11 ¼ 1
2

s1 þ s3ð Þ þ 1
2

s 1 � s3ð Þcos 2u (39)

s22 ¼ 1
2

s1 þ s3ð Þ � 1
2

s 1 � s3ð Þcos 2u (40)

s 33 ¼ s3 (41)

The substitution of the previously mentioned stress components
into Eq. (5) leads to the following equation:
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Fig. 15. Effect of elastic parameters (a) Ev and (b) �vh on plastic flow directions at different stress states for the horizontal bedding specimen
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s1 ¼ D
X � b

þ 2b þ X
X � b

s3 (42)

in which, X is a coefficient related to loading direction and it is
expressed as

X¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F

1
2
1� cos2uð Þ

� �2
þF

1
2
1þ cos2uð Þ

� �2
þH cos2uð Þ2

( )vuut
(43)

Fitting Eq. (42) with the test data in Table 3 yielded the parame-
ters in Table 4. The DP model and Hill’s model were fitted with the
test data in Table 3. The parameters of these two models are pre-
sented in Table 4. The comparison between test data and model pre-
dictions is shown in Fig. 17.

It is interesting to note that Hill’s model could predict the load-
ing direction-dependent strength with a limited range. The compari-
son indicates that the proposed model in this study could describe
the dependency of triaxial compression strength on both loading
direction and confining pressure.

Conclusions

In this paper, the elastoplastic property of TI rock was analyzed and
a constitutive model for the property was proposed. The methodol-
ogy for parameter determination was developed. The proposed
model and the parameter determination methodology were applied
to modeling the TI elastoplastic property of carbonaceous slate in
triaxial compression.

A TI elastoplastic model for rocks was proposed. In the
model, the generalized Hooke’s law was adopted for the elastic
behavior. For the plastic behavior, the yield criterion and plastic
potential are formulated as functions of the generalized octahe-
dral shear stress and the first invariant of stress tensor. A nonas-
sociated flow rule and a stress-dependent hardening rule were
adopted in the model. The plastic model can be simplified to the
DP model for isotropic rocks. A methodology for the model
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Fig. 17. Comparison of the triaxial compression strength between the test data (Singh et al. 2015) and predictions from DP, Hill, and extended Hill
models

Table 3. Axial Stresses at Failure (in Megapascals) of Phyllite Specimens
with Different Bedding Directions When Subjected to Different Confining
Pressures (Data from Singh et al. 2015)

s3 (MPa)

b

0° 15° 30° 45° 60° 75° 90°

5 110 80 48 51 65 100 110
30 210 170 130 120 155 200 220

1

2

3/3’(33)

1’(11)

2’(22)

θ

Bedding 
planes

Fig. 16. Coordinate systems associated with the specimen: 1, 2, and 3
are coordinate axes along the first, second, and third principle stress
directions; 10 is the coordinate axis along the normal direction of bed-
ding planes; 20 and 30 are coordinate axes in bedding planes in which
the coordinate axes 30 and 3 are coincident one another

Table 4. TI Strength Parameters of the Models for the Phyllite in Triaxial
Compression Tests

Model a D/MPa F H

This study 0.5 45 4.8 –3.8
DP 0.707 56.56 — —

Hill — 127.3 4.8 –3.8
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parameter determination was developed. The parameters can be
determined by combining triaxial compression tests with a tor-
sion test on specimens with different bedding directions. The
constraint on plastic parameters was theoretically identified.

The proposed model and the parameter determination methodol-
ogy were applied to modeling the TI elastoplastic property of carbo-
naceous slate in triaxial compression. The results show that the
model proposed in this study can well describe the transverse iso-
tropic elastoplastic property of the rock, and the parameter determi-
nation methodology is simple and effective. Several other issues
including the plastic flow directions, the interaction between elastic
and plastic parameters, and the dependency of strength on loading
direction were also discussed. It was found that at an identical stress
state, the dilation angle for the vertical bedding specimen is higher
than that of the horizontal bedding specimen due to the dependency
of plastic flow on loading direction. The dilation angle increases
with both the elastic modulus Ev and Poisson’s ratio vvh. The pro-
posed model could describe the dependency of triaxial compression
strength on both loading direction and confining pressure.

In this study, a framework on the constitutive modeling of TI
elastoplastic property of rocks and parameter determination has
been developed. The framework could be extended to modeling
other geomaterials exhibiting TI property. In practice, careful prep-
aration of the specimens and an adequate number of tests are recom-
mended for the application of the framework.
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Notation

The following symbols are used in this paper:
Eh ¼ elastic modulus in the iso-

tropic plane;
Ev ¼ elastic modulus in the

direction perpendicular to
the isotropic plane;

F ¼ plastic potential;
F, G, H, L, M, N ¼ parameters in the yield

function of Hill’s model;
G ¼ yield function;

Gvh ¼ shear modulus in the
direction perpendicular to
the isotropic plane;

Ip ¼ polar moment of inert;
I1 ¼ first invariant of stress

tensor;
L ¼ length of specimen;
T ¼ torque in torsion test;

�hh ¼ Poisson’s ratio in the iso-
tropic plane;

�vh ¼ Poisson’s ratio, which is
the ratio of the strain in the
isotropic plane over that in
the direction perpendicular
to the isotropic plane;

a ¼ parameter in plastic poten-
tial of the extended Hill’s
model;

b and D ¼ parameters in the yield
function of the extended
Hill’s model;

ɛpij ¼ plastic strain component;
ɛv, ɛh, ɛh1, ɛh2, ɛa, ɛr ¼ stress tensor components in

triaxial compression tests
ɛ11, ɛ22, ɛ33, g 23, ɛ31ɛ12 ¼ strain tensor components

in local coordinate system;
u ¼ dip angle of bedding

planes of specimens in tri-
axial compression;

s v, sh, sh1, s h2 ¼ stress tensor components in
triaxial compression tests;

s xx, s yy, s zz, t yz, t zx, t xy ¼ stress tensor components in
global coordinate system;

s11, s 22, s33, t 23, t31t 12 ¼ stress tensor components
in local coordinate system;
and

w ¼ dilation angle;
f ¼ rotation angle.
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