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A group of nonsingular enrichment functions is proposed for an exact representation of the
cohesive stresses, which are consistent with a nonsingular asymptotic stress field around a
crack tip. An improvement in the adaptive crack tip polar coordinate is proposed for treat-
ing the local polar coordinate error. Finally, a discontinuous cellular automation model was
developed, including a cell model, cell state, and updating rules. Combined with these
developments and the cohesive rock model, a continuous-discontinuous cellular automa-
ton method (CDCA) for a cohesive crack analysis is proposed, through which the calculation
is only limited to the cell locality without re-meshing, and therefore, no assembled global
stiffness matrix is required. Numerical simulations reveal the accuracy and efficiency of the
presented method.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

With regard to a quasi-brittle material such as concrete or rock, a fracture process zone exists around the crack tip of the
structure and includes fracturing to significant damage. Actually, the material is not fully cracked in this area, and it can still
bear a certain amount of cohesion. Under the assumptions of the linear elastic fracture theory, stress at the crack tip becomes
theoretically infinite; however, from a physical viewpoint, no material can withstand such an infinite amount of stress.
Neither linear elastic fracture mechanics nor nonlinear fracture mechanics can be used to predict the crack propagation
in concrete or rock structures. Therefore, a numerical simulation on cohesive crack propagation is very important for rock
and concrete engineering.

The cohesive crack model is generally accepted as a realistic simplification of the fracture of brittle materials, and was
first proposed by Barenblatt [1] and Dugdale [2]. Barenblatt applied the model to analyze the brittle fracture behavior,
and Dugdale introduced it to model the ductile fracture behavior. The model was then experimentally proven reliable for
rock-like and quasi-brittle materials [3]. Shortly thereafter, Ngo and Scordelis [4] and Hillerborg, Modeer, and Petersson
[5] applied the cohesive crack model to simulate the softening damage of concrete structures, and Elices et al. [6] discussed
its advantages and limitations.

In recent years, a number of numerical methods have been proposed to solve the cohesive crack propagation problem.
Clearly, when potential crack paths are limited to inter-element boundaries, the crack paths are highly dependent on the
meshing structure. Although a finite element method (FEM) is not the best numerical method for solving such problems,
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Nomenclature

a vector of additional degree of nodal freedom for strong discontinuity
bf body force vector

bl
i vector of additional degrees of nodal freedom for crack tip field

Bai derivative matrix of shape function matrix
cc cohesion angle
cs crack surface state
d regular displacement vector
D elasto-plastic constitutive matrix
E Young’s modulus
fcoh cohesive force
fai , f

I
i nodal force for normal and frictional freedom

f n loading or unloading factor
Fl crack tip enrichment function
Fai unbalanced nodal force
HðnÞ heaviside function
ku
i , k

a;b
i , kc

i stiffness related to the traditional nodal freedom, additional nodal freedom, and cohesive
kn, ks normal and shear stiffness constants
Ki nodal stiffness
n, m node number of an element
nðxÞ unit outward normal vector for point x
nðx; tÞ positive direction of crack on point x
NjðxÞ classical finite element shape function
~N shape function matrix related to the relative displacement
N̂ shape function related to cohesive displacement field
pN, pT normal and tangential pressures
r polar coordinates, polar distance
r residual
tðxÞ tangential vector for point x
tcoh cohesive stress
tcohn , tcoht cohesive stress component in normal and tangential directions

t̂ given traction boundary condition
uðxÞ displacement vector on point x
u, û displacement vector and given displacement boundary condition
usþ, us� displacement vector on crack surface Sþ and S�

~u relative displacement vector between crack surfaces
wn, wmax

n , wc
n normal separation at crack surface, history value, critical value

wt , wc
t tangential separation at crack surface and critical value

wcðxÞ relative displacement between crack surfaces
w, t displacement and traction vectors
h polar coordinate, polar angle
lc Coulomb friction coefficient
m Poisson ratio
r stress vector
/i
jðx; tÞ distance function to crack front of crack j

uc Friction angle
ujðx; tÞ distance function to crack surface of crack j
Dui, Df i increment of nodal displacement and nodal force
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owing to its domain re-meshing during crack propagation and its fine meshing for representing a high gradient stress at a
crack tip, some studies associating cohesive crack growth problems with FEM have been presented [7,8]. Recently, polygon-
based finite elements [9], the Voronoi cell FEM [10], and a generalized variable FEM [11,12] have been implemented to
model the cohesive crack propagation. To avoid the difficulties involved in fully automatic cohesive crack propagation mod-
eling, a scale boundary finite element method and a coupled finite element and scale boundary element method have both
been developed [13,14].

As a widely used numerical method, the boundary element method (BEM) has also been used by many researchers over
the past decades for cohesive crack growth modeling [15–18], and a dual reciprocity BEM and an alternative nonlinear BEM
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formulation have been used. Furthermore, a symmetric Galerkin boundary element method has been proposed for dealing
with quasi-brittle fracture and frictional contact problems [19], and a symmetric Galerkin multi-zone boundary element
method has been developed for the growth of multiple cohesive cracks [20].

Owing to their much greater smoothness, flexibility, and a lack of meshing, mesh-free methods are a good alternative for
crack propagation problems compared to the FEM and BEM. Modeling of the crack propagation using the mesh-free Element-
free Galerkin method (EFGM) was first conducted by Belytschko et al. [21], and furthermore, Rabczuk and Zi [22] proposed a
mesh-free method based on the local partition of unity for cohesive cracks, geometrically combined nonlinear theory and an
extended EFG to solve three-dimensional cohesive crack fracturing for reinforced concrete structures [23]. In addition, Gou-
darzi et al. [24] developed an enriched EFGM for analyzing cohesive cracking in a saturated porous medium. Moreover, Jas-
kowiec and Cichon [25] coupled FEM and EFGM with a dynamic decomposition for a 2D quasi-brittle crack growth analysis.

In recent years, the extended finite element method (XFEM) has been widely used for crack propagation analyses because
it can completely avoid re-meshing for crack dynamic fracturing. Wells and Sluys [26] and Moes et al. [27] first applied XFEM
to model the growth of arbitrary cohesive cracks. In addition, Zi and Belytschko [28] proposed a new crack-tip element for
modeling static cohesive cracks, in which all cracked elements are enriched by the sign function such that no blending of the
local partition of unity is required. Similarly, Mariani and Perego [29] and Mergheim et al. [30] proposed the use of compu-
tational modeling and a methodology for the simulation of quasi-static cohesive crack propagation in quasi-brittle materials.
In addition, some other applications of cohesive crack propagation for elastostatics and elastodynamics using XFEM [31–34]
have recently been reported.

Differing from the node-level enrichment of XFEM, embedded crack models (ECMs) [35,36], which are based on an ele-
ment level of enrichment, have also been widely used for cohesive crack propagation because this approach can also model
cohesive crack propagation without re-meshing; however, its shortcoming is that the displacement approximation is non-
conforming, and the resulting stiffness matrix is unsymmetrical.

Almost all of the above methods require an assembled global stiffness matrix in their computations, which is time-
consuming and requires high memory consumption, because different nodes have different numbers of node freedoms.
However, the cellular automation (CA) theory can be used to overcome this defect, through which no assembled global stiff-
ness matrix is required. The CA theory was initially derived from the self-organization theory in biology. The theories and
applications of CA to solid mechanics have developed rapidly over the past decades, including those by Eugenio and Rasetti
[37], who developed a CA model for elasticity, and Olami et al. [38], who used CA in earthquake modeling. In addition, Abdel-
laoui et al. [39] applied CA for the contact problem, and Canyurt et al. [40] developed a CA model for structural analysis and
optimization. Moreover, Shen et al. [41] developed elastic updating rules and applied them for solving the solid mechanical
problem. Gurdal and Tatting [42] built a lattice model to solve the plane lattice deformation problem, and Leamy and Hop-
man [43,44] developed an application of cellular automaton modeling for use with the elastodynamics problem and arbi-
trary two-dimensional geometries. Further, Feng et al. [45] used the lattice CA model to simulate the failure process of
heterogeneous rocks. Based on the lattice CA model, Yan et al. [46,47] proposed a continuous-discontinuous cellular automa-
ton method for tensile propagation of multiple cracks, and furthermore, they [48,49] developed a traditional frictional con-
tact method for the compression shear propagation of multiple cracks.

For elastic and plastic solids, Popov and Psakhie [50] proposed a movable CA for the modeling of elastoplastics, Xiao [51]
employed CA to simulate elastic wave propagation, and Kwon and Hosiglu [52] applied a coupling of the lattice Boltzmann
method, finite element method, and cellular automata to an analysis of wave propagation problems. Khvastunkov and Leg-
goe [53] combined the finite element method with CA and studied random spatial heterogeneity distributions.

Based on the traditional frictional contact method used in a continuous-discontinuous cellular automaton [48,49], a cohe-
sion model for rock cracks was developed, and a novel continuous-discontinuous cellular automaton (CDCA) method for
cohesive crack propagation modeling has been implemented in detail. In a cohesive crack model, there are no singularities
at the crack tip, and therefore, a crack tip enrichment with singular functions is not suitable; thus, a group of new nonsin-
gular additional enrichment functions is employed instead of the traditional singular enrichment functions, which are con-
sistent with a nonsingular asymptotic stress field around a cohesive crack tip. Aiming at determining a devious crack path, an
improvement in an adaptive crack tip polar coordinate is proposed for treating the local polar coordinate error caused by a
devious crack-fracturing segment. Based on a cohesive crack model of quasi-brittle materials, a cellular automation model
for cohesive cracks has been developed, including a cell model, cell state, and updating rules. Combined with the above the-
ories, the CDCA for a cohesive crack propagating analysis is proposed, in which the cracking path can pass through any ele-
ment and no re-meshing is required. In addition, the calculation is only limited to the cell locality, and no assembled global
stiffness matrix is needed, which can help avoid some of difficulties caused by the different nodal freedoms for different
nodes. Finally, the effectiveness of the proposed approach is demonstrated through simulations of cohesive crack growth
in rock.
2. Cohesive model and variational formulation

Consider a body X with crack S, as shown in Fig. 1. The crack tip includes a physical tip and fictitious tip, and crack S
includes two separate surfaces Sþ and S�. According to the cohesive crack theory, the relation between crack open displace-
ment (COD) and cohesive stress, and the local model of a cohesive crack tip, can be given as shown in Fig. 2.



Fig. 1. Model of cohesive crack problem.

Fig. 2. Local model of crack tip.
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2.1. Cohesive model

For quasi-brittle materials, the fracture process zone around a crack tip is large enough to cause nonlinear effects, which
cannot be neglected. To consider these effects, cohesive crack models were first proposed by Barenblatt [1] and Dugdale [2],
which were further developed and applied [3–5,54,55]. A number of non-uniform traction models have been proposed in the
past years, and using these cohesive zone models, the tractions around the crack decrease and vanish with an increasing sep-
aration of the crack surfaces. These models share the same concept as softening behavior, where the traction has the max-
imum intensity at the point of a fictitious tip and the minimum value at the point of a physical tip, as shown in Fig. 2.

Non-uniformmodels in terms of traction-opening curves include uniform, linear, bilinear, and exponential models, and in
the present paper, a three-parameter rate-independent linear cohesive model is employed, which was first proposed in
[9,15,56], and the traction-separation behavior under loading and unloading cases can be seen in Fig. 3.

According to the cohesive crack model [26], a loading function can be defined as
f n ¼ wn �wmax
n ð1Þ
where wn is the normal separation at the crack surface, a positive displacement indicates that the crack is opening, and wmax
n

is the historic value of wn, which is equal to the largest value of wn in its cracking history. When a crack is opening, f n P 0
indicates that the discontinuity is loading, and f n < 0 indicates that it is unloading. The model assumes a free cohesive
energy potential / [26], and the traction across the cohesive surface is expressed as
tcoh ¼ tcohn nðxÞ þ tcoht tðxÞ ¼ @/
@wn

nðxÞ þ @/
@wt

tðxÞ ð2Þ



Fig. 3. Traction-separation behavior for linear cohesive crack model.
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in which nðxÞ denotes the unit outward normal vector for point x, and tðxÞ is the tangential vector for point x; in addition, tcoh

is the cohesive stress vector, and tcohn and tcoht are the cohesive stress components in the normal and tangential directions,
respectively.

In this case, the normal cohesions of the crack surface can be given as follows:
tcohn ðwnÞ ¼ f t 1� wn
wc

n

� �
if 0 6 wn 6 wc

n

tcohn ðwnÞ ¼ 0 if wn > wc
n

ð3Þ
where wc
n is the critical value of the crack opening displacement.

Similarly, one can obtain the following tangential traction:
tcoht ðwtÞ ¼ sm �1� wt
wc

t

� �
if �wc

t 6 wt 6 0

tcoht ðwtÞ ¼ sm 1� wt
wc

t

� �
if 0 6 wt 6 wc

t

tcoht ðwtÞ ¼ 0 if wt > wc
t

ð4Þ
In the present method, the effect between normal traction and tangential traction can be neglected, and thus, we can
obtain the constitutive law of the present cohesive model, and traction t on a cohesive crack surface is thus related to the

crack opening displacement wc ¼ ½wn;wt �T [14], which can be written as
t ¼ tcohn

tcoht

 !
¼

@tcohn
@wn

0

0 @tcoht
@wt

2
4

3
5 wn

wt

� �
¼ kn 0

0 ks

� �
wn

wt

� �
ð5Þ
where kn and ks are the secant stiffness determined by the normal and tangential softening laws shown in Fig. 3.

2.2. Variational formulation

Consider a body including a cohesive crack with tractions fcoh along the fracture process zone Cc . According to cohesive
crack theory, the governing equations can be written as
divðrÞ þ bf ¼ 0 in X

nðxÞ � r ¼ t̂ on Ct

u ¼ û on Cu

nðxÞ � r ¼ tcoh on Cs

ð6Þ
where r is the stress tensor, u is the displacement vector, bf is the body force, t̂ is the traction vector acting on an external
surface Ct , and û is the given displacement boundary condition on Cu.

Now, we assume that tcoh is simply related to the crack opening displacement wc . Then, the weak form of the equilibrium
equation can be written [26,27,46–49] as follows:
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W int ¼ Wext þWcoh ¼
Z
X
r � dedX ¼

Z
X
bf dudXþ

Z
Ct

t̂dudC�
Z
Cc

tcohðdusþ � dus�ÞdC ð7Þ
in which e is the strain tensor, usþ is the displacement vector on crack surface Sþ, and us� is the displacement vector on crack
surface S�.

3. Discontinuous cellular automaton for cohesive crack

3.1. Discontinuous enrichment for cohesive model

Compared to the infinite crack tip stress of a linear elastic fracture model, the crack tip stress of the cohesive crack model
is finite, and the traditional infinite enriched function of a crack tip is therefore not suitable for the cohesive crack model.
Although an analytical solution for the response near an arbitrary cohesive zone does not exist, the case of a cohesive zone
associated with a straight crack within an isotropic linear domain was recently addressed. According to [57], the asymptotic
displacement field of a cohesive crack tip for pure mode I can be given as follows:
u ¼
X
n¼1

r
ð2nþ1Þ

2

2l
a1n jþ 2n� 1

2

� 	
cos

2nþ 1
2

h� 2nþ 1
2

cos
2n� 3

2
h

� �
ð8Þ

v ¼
X
n¼1

r
ð2nþ1Þ

2

2l
a1n j� 2n� 1

2

� 	
sin

2nþ 1
2

hþ 2nþ 1
2

sin
2n� 3

2
h

� �
ð9Þ
where r and h are respectively the radius and angle of the calculating point in a local crack tip coordinate system, Kolosov
constant j ¼ ð3�mÞ

ð1þmÞ for the plane stress problem, and j ¼ 3� 4m for the plane strain problem; in addition, a1n is a coefficient, n

is a variable from 1 to þ1, l ¼ E=½2ð1þ mÞ� is the shear modulus, E is the elastic modulus, and m is the Poisson ratio.
Furthermore, the asymptotic displacement field of a cohesive crack tip for pure mode II can be given as follows:
u ¼
X
n¼1

r
ð2nþ1Þ

2

2l
a2n j� 2n� 1

2

� 	
sin

2nþ 1
2

h� 2nþ 1
2

sin
2n� 3

2
h

� �
ð10Þ

v ¼ �
X
n¼1

r
ð2nþ1Þ

2

2l
a2n jþ 2n� 1

2

� 	
cos

2nþ 1
2

hþ 2nþ 1
2

cos
2n� 3

2
h

� �
ð11Þ
According to Eqs. (8) and (9), the following special purpose functions for the crack tip enrichment are applied:
fFl;l¼1�4g ¼ r
3
2 sin

h
2

� 	
; r

3
2 cos

h
2

� 	
; r

3
2 sinðhÞ sin h

2

� 	
; r

3
2 sinðhÞ cos h

2

� 	� �
ð12Þ
As is well known, the asymptotic displacement field of a cohesive crack tip in mixed mode can also include the functions
of Eqs. (8)–(11), which can be given as the functions of the four parts in Eq. (12), which can in turn be used for a mixed-mode
cohesive fracture.

3.2. Continuous-discontinuous cellular automaton discretization

According to the crack tip enrichment described in the previous section, we can obtain the shape function for a cohesive
crack problem, which can be given as
uðxÞ ¼
Xn
j¼1

NjðxÞdj þ
Xm

k¼1
NkðxÞðHðuðx; tÞÞ � Hðuðxk; tÞÞÞak|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k2P

þ
Xt

i¼1
NiðxÞ

Xnf

l¼1
ðFlðxÞ � FlðxiÞÞbl

i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

i2T

¼ ~Nfd a bg ð13Þ
where NjðxÞ is the classical finite element shape function; dj is the standard degree of freedom; ak is a vector of the additional
degree of nodal freedom for modeling a strong discontinuity; uðx; tÞ and uðxk; tÞ are the distance from points x and xk to the
crack, respectively; n, m and t are node numbers of an element; nf is the number of basis functions for the enrichment func-

tion in Eq. (12); P represents the node sets penetrated by a crack; T denotes the crack tip nodes; bl
i is a vector of additional

degrees of nodal freedom for modeling the crack tip stress field [47–49]; HðnÞ is the Heaviside function; and ~N is a shape
function matrix of a discontinuous element. In addition, for a continuous element, the shape function is the same as the tra-
ditional finite element, which is
uðxÞ ¼
Xn
j¼1

NjðxÞdj ¼ Nd ð14Þ
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According to Eq. (13), we can obtain Hðuðx; tÞÞ ¼ 1 on a discontinuous surface of Sþ, and Hðuðx; tÞÞ ¼ �1 on a discontin-
uous surface of S�. We can then obtain
wcðxÞ ¼ uSþ � uS� ¼ 2
Xm

k¼1
NkðxÞak|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
k2P

þ 2
Xt

i¼1
NiðxÞrb0

i|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
i2T

¼ N̂fabg ð15Þ
where N̂ is the shape function related to a cohesive displacement field, and b0
i is the first component of the vector of addi-

tional degrees of nodal freedom bi for modeling the crack tip stress field.
Substituting Eqs. (13)–(15) into Eq. (7), we can obtain the following residual equation [47–49]:
rðDÞ ¼ Fu
ext � Fu

int

Fab
ext � Fab

int � Fcoh
int

( )
ð16Þ
where D ¼ fdabgT , Fu
intðd; aÞ ¼

R
X BTrðd; aÞdX, Fu

ext ¼
R
X NTbf dXþ RC NTt̂dC, Fab

intðd; a;bÞ ¼
R
XhnS

~BTrðd; aÞdX, and Fab
ext ¼R

Xh
~NTbf dXþ RCh

~NTt̂dC, in which B is a derivative of a traditional finite element shape function matrix N, and ~B is a derivative

of the shape function matrix ~N. In addition, the nodal force related to fcoh can be given as
Fcoh
int ¼

Z
S
N̂TtcohdS ð17Þ
To solve this nonlinear problem, we iterate using Newton’s method and cellular automaton updating rules, which are the
same as in [47–49].

According to the cohesive model theory, the cell cohesive state cs can be any one of four states, i.e., no fracturing, cohesive,
fracturing and opening, or fracturing and closed, and cs can be given as follows.
cs ¼

¼ 0 no fracturing
¼ 1 cohesive
¼ 2 fracturing and opening
¼ 3 fracturing and closed

8>>><
>>>: ð18Þ
Based on the CA model, the calculation is located in any one cell for each update, and we can then obtain
Ki ¼ �r0ðDÞ ð19Þ
where Ki can be divided into three groups, i.e., a ku
i matrix related to the traditional nodal freedom, a ka;b

i matrix related to
the additional nodal freedom a or b, and a kc

i matrix related to the cohesive crack model, which can be given as
ku
i ¼

Z
Xe

BT
i DBidX ð20Þ

ka;b
i ¼

Z
Xe

ðBr
i ÞTDðBr

i ÞdX r ¼ a;b ð21Þ

kc
i ¼

Z
Xe

N̂T
i EN̂idX ð22Þ
where Bi is the matrix of the shape function derivatives of the traditional FEM method, and Br
i is the matrix of the shape

function derivatives of the enrichment function; for example, r ¼ a represents the derivatives of the Heaviside function,
r ¼ b represents the derivatives of the crack tip enrichments, D is a constitutive matrix, and E is a constitutive matrix for
the cohesive model, which can be given as
E ¼ TT kn 0
0 ks

� �
T ð23Þ
where T is the transformation matrix from the global coordinate system to the local crack coordinate of the crack tip.
Actually, some subdomains are obtained according to the element type for a nodal matrix integration, which can be seen

in Fig. 4. It can be seen in Eq. (12) that no singular integral is accounted for, and we can then obtain the following integration
scheme:
ku
i ¼

Z
A1
BT
i DBidXþ

Z
A2
BT
i DBidXþ

Z
A3
BT
i DBidXþ

Z
A4
BT
i DBidX ð24Þ
In addition, the same equations for a nodal force matrix and a cohesive stiffness matrix can be obtained according to Eq.
(24).

According to the different states of a crack surface, the nodal matrix can be given as follows.



A1
A2

A3
A4

crack

element i

A1
A2

A3
A4

crack

element i

a) crack tip element b) penetrated element

Fig. 4. Integration scheme of crack tip element and penetrated element.
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Ki ¼

ku
i cs ¼ 0

ku
i þ ka;b

i þ kc
i cs ¼ 1

ku
i þ ka;b

i cs ¼ 2

ku
i þ ka;b

i cs ¼ 3

8>>>><
>>>>:

ð25Þ
3.3. Discontinuous cellular automaton for cohesive model

Through the continuous-discontinuous cellular model, the equilibrium state of the cell can be obtained through a one-
another transfer of the information between nodes. The behavior of the cell is thought to be essentially local; in other words,
the state of one cell is simply determined by the states of itself and its neighbors. There are three advantages to this theory.
First, there is no need to assemble the global stiffness matrix, particularly for the enriched nodes, and the different degrees
may bring about certain difficulties in the assembly operation, which can also save a great deal of computational memory.
Second, it is easy to consider the local properties of the cell. Third, a large-scale simulation can be easily conducted owing to
the easy implementation of a parallel algorithm.

The CDCA model is composed of a cell, cell space, cell state, crack, neighborhood, updating rules, and other elements, and
the relationships among these components can be seen in [45,47–49].
3.3.1. Cell and its state
According to CDCA, a cell includes a common finite element cell, opening crack cell, cohesive crack cell, and common

finite element cell, and the opening crack cell can be seen in [45,47–49]. Based on the cohesive crack model and CDCA the-
ories, Fig. 5 shows that a series of physical and mechanical variations must be defined to determine the different states of a
cohesive cell. A cohesive crack cell model is composed of the degree value vector of nodal freedom uh ¼ fu; a;bg, in which u
is the traditional degree of nodal freedom, a is the Heaviside enriched degree of nodal freedom, b is the crack tip field func-

tion enriched degree of nodal freedom; in addition, the cell nodal forces vector f ¼ ffu; fa; fb; fcohg, in which the subscripts u,
a and b represent traditional, Heaviside-enriched, and exact near-tip asymptotic field functions with enriched degrees of
Cell statestress strain

displacement/
enriched freedom

cohesive stress
crack level set 

function

COD/max COD 
in its history

crack 
state:opening/coh

esive

node force
/enriched node 

force

Fig. 5. Cell states.
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nodal freedom, respectively, and cs indicates the states of a cohesive cell. Based on the above cohesive cellular automata
model, the states of a cohesive cell can be given as shown in Fig. 5.

3.3.2. Continuity to discontinuity model
In the CDCA and cohesive crack models, discontinuity may exist in some cellular elements, which include a crack opening

element, cohesive crack element, and mixed element, which are shown in Fig. 6. The location of the crack, COD, and max-
imum COD on its history will determine the cellular node type, cellular element type, and cellular automaton model. In addi-
tion, with this method, the crack path is tracked based on the level set functions. By way of the level set values, the COD and
maximum COD on its history, the node cellular type, the element cellular type, and the cellular automaton model are
updated, particularly for certain cells, which change from a continuous cellular automaton model to a discontinuous cellular
automaton model, from a cohesive crack element to a crack opening element, and so on.

3.3.3. Model updating

First, we define a cohesive crack vector C ¼ fcs;wc;wm
c ; f

cohg, whose initial value is C ¼ f0;0;0;0g. Considering a cellular
node Ni for a plane stress problem, the displacement of this node can be obtained owing to the effects of the nodal force

vector f i ¼ ffui ; fai þ fcohi ; fbi þ fcohi g, opening crack element stiffness matrix ku
i , and stiffness related to cohesive kc

i , and can

restrict all degrees of nodal freedom on its neighbor cell nodes Nk
i , which can be found in [45,47–49]. We can then obtain

a new cohesive crack vector, and renew the stiffness matrix as K ¼ ku
i þ ka;b

i þ kc
i when cs ¼ 1. The stiffness matrix then

becomes K ¼ ku
i when cs ¼ 0. According to the state of the crack surface and the cohesive crack model, the cohesive stress

fcoh can be obtained. The relationship between the incremental force and incremental deformation can be reflected in two

steps. First, the nodal force increment Df i ¼ fDfui ;Dfai þ Dfcohi ;Dfbi þ Dfcohi g will lead cell node Ni to produce the displacement
increment, Duh

i ¼ fDui;Dai;Dbig. The displacement increment Duh
i on cell node Ni will then lead its neighboring cell nodes to

produce nodal force increment Dfki , and at the same time, Duh
i ¼ fDui;Dai;Dbig will cause changes to the crack surface state

cs and cohesive crack vector C ¼ fcs;wc;wm
c ; f

cohg.
Therefore, the increment of nodal force leads to the increment of nodal displacement, and the increment of nodal dis-

placement leads to the increment of nodal force for its neighboring nodes, until static equilibrium of the system is achieved;

in other words, a self-organization phenomenon of Duh
i ! 0 and Dfki ! 0 appears. Thus, the updating steps for the cohesive

crack problem can be given as follows:

(1) Obtain the updating order for all cells, and construct an adaptive updating scheme [58]. First, according to the nodal
force matrix, one can obtain unbalanced nodal force Fai , and can further obtain the updating order set f a1; a2; . . . ; antg,
in which the unbalanced nodal force should satisfy Fa1 P Fa1þ1.

(2) Initialize the cohesive crack state and stiffness matrix, and assume that the entire crack is opening, i.e., cs ¼ 0,

wm
c ¼ wc ¼ 0 and fcoh ¼ 0.

(3) According to the cohesive crack vector C ¼ fcs;wc;wm
c ; f

cohg, update the nodal stiffness matrix Ki and nodal force incre-
ment Df i.

(4) Constrain all degrees of nodal freedom on all neighboring cells Nk
i , as shown in Fig. 7. According to the system function

of the CA method, KiDuh
i ¼ Df i, in which Df i ¼ fDfui ;Dfai þ Dfcohi ;Dfbi þ Dfcohi g. Calculate the increment of degrees of

nodal freedom Duh
i using the increment of nodal force Df i.
crack opening
element mixed

element
crack cohesive
element

physical tip ficitious tip physical tip ficitious tip

mixed
element

step n step
n+1

crack
propagation

crack opening
element

crack opening
element

crack cohesive
element

Fig. 6. Continuity to discontinuity model.



Fig. 7. Local updating model.
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(5) Obtain the nodal force increment Dfki of the neighboring cell Nk
i through Duh

i of cell Ni from the following equation:

Dfki ¼ Kk
i Du

h
i .

(6) According to the results of steps (2) and (3), update the cohesive crack vector C ¼ fcs;wc;wm
c ; f

cohg. Obtain crack open-

ing displacement wc and cohesive stress Dfcohi .

(7) Apply steps (2) through (5) on all cellular nodes until Dfki < ef , Duh
i < eu, and cohesive crack vector C ¼ fcs;wc;wm

c ; f
cohg

no longer changes between the last two iterations.

Similar to other methods regarding the contact and cohesive problems, the convergence of the present method is influ-
enced by the secant stiffness values kn and ks, and both a much larger and much smaller secant stiffness can lead to difficulty
of convergence. After optimization through a numerical example, 10�1E 6 kn 6 103E and 10�2E 6 kn 6 102E can be easily
converged, and the iteration number is determined based on the secant stiffness, crack state, and crack number; for example,
with a 20,000 cell structure with one straight crack, only several hundred updating steps are needed for this method, and no
more than one-hundred Newton iterations are needed for a cohesive iteration.
4. Adaptive near-tip improvement

4.1. Crack propagating path tracking

Based on the CA model, a new method was developed in this study to track the crack propagating path, which combines
cell space cutting, cell neighbor searching, and the distance value to crack the surface and front. Differing from the level set
method, the crack path tracking of the present method is only located on some of the local cells, which can considerably
improve the calculation efficiency compared to a global search of the level set method.

First, assuming that one crack tip is located in cell C1, according to the neighbor information and crack path location, the
crack path will cut the line connecting nodes 1 and 2, and based on nodes 1 and 2 and the CA model, the next cutting cell C2

can be easily obtained. According to this rule, until all cut cells for the whole crack path are obtained, which can be seen in
Fig. 8. For all cut cells, the distance values /i and u from each cell node to the crack surface and crack front are calculated,
and then based on these two distance values, we can precisely track the cracks. Using the entire process of the present
method, it can be seen that the calculation is located on the local cells, and the data saved are only the values for such cells.

First, a normal vector of crack surface e2ðx; tÞ is defined, which can be seen in Fig. 9, and the moving crack surface of inter-
est can then be represented as a zero distance function of ujðx; tÞ. Through this method, the discontinuities are independent
of the calculation grid. In general, a crack surface and some other discontinuities can be expressed as a distance function of
ujðx; tÞ ¼ 0, and we can obtain the following:
ujðx; tÞ ¼ min
xCj2Cj

kx� xCj
k ðx� xCj

Þ � e2

kðx� xCj
Þ � e2k ð26Þ
where Cj denotes the calculating crack, and xCj
is the nearest point on crack Cj to source point x.



(a) Crack tip cell (b) Neighbor information and cell cutting

(c) Crack path and all cutting cells 
Fig. 8. Crack tracking model.

Fig. 9. Distance function of crack path tracking.
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For a crack, only one distance function ujðx; tÞ is generally insufficient to track the crack path, and similar to the crack

surface function, a crack path in a positive direction is defined as e1ðx; tÞ, and thus another distance function /i
jðx; tÞ at
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the crack front is employed for this method. A growing crack front is tracked by representing the crack as the zero distance
function /i

jðx; tÞ. Two distance functions /1
j ðx; tÞ and /2

j ðx; tÞ for each crack front are then applied.
/1
j ðx; tÞ ¼ �min

xCj2Cj

kðx� xCj
Þk ðx� xCj

Þ � e1
kðx� xCj

Þ � e1k

/2
j ðx; tÞ ¼ min

xCj2Cj

kðx� xCj
Þk ðx� xCj

Þ � e1
kðx� xCj

Þ � e1k

ð27Þ
4.2. Adaptive improvement

As shown in Fig. 10, an unacceptable error can occur when the crack surface is not straight and a traditional unimproved

local coordinate system is used. For example, with h ¼ � sin�1 db
dOP

� �
< 0, in which dOP is the distance between points O and P,

and P is actually located within the domain of nþ, h > 0 must be satisfied; however, under a traditional local coordinate sys-
tem, h < 0 can be obtained, and the error is unacceptable. Thus, an adaptive near-tip improvement is proposed for the pre-
sent method. To obtain a much more accurate angle of the enrichment functions, Belytschko and Black [59] proposed a
scheme for obtaining the spatial derivatives of the enriching functions in the original global coordinate system, where a
chain rule between the old and new coordinates is constructed. Differing from the method by Belytschko and Black, an adap-
tive improvement is developed through this method, in which the approximate angle for each field point is calculated
exactly, which is much simpler and more efficient than the method proposed by Belytschko and Black.

As described in the previous section, the distance to the crack surface is employed for tracking the crack propagating path,
and the distance uðx; tÞ to crack surface C for point P can then be given as uðx; tÞ ¼ minxC2Ctkx� xCk � signðnþ � ðx� xCÞÞ; in
addition, the global coordinate of source point P is x, xC is any point on a crack surface that is nearest to point x, and nþ is a
unit normal vector to the crack surface. At this time, we define the local polar coordinate angle as
h ¼ arctg
d
dOA

� 	
� signðuðx; tÞÞ ¼ arctg

uðx; tÞ
dOA

� 	
uðx; tÞ – 0 ð28Þ

h ¼ puðx; tÞ ¼ 0; x 2 nþ; and ð29Þ

h ¼ �puðx; tÞ ¼ 0; x 2 n� ð30Þ

where dOA is the distance between crack tip O and nearest point A on the crack surface of point x.

With this method, the sign of the local coordinate angle is always exact, and is always consistent with the location on the
local crack surface.

4.3. Example of an adaptive improvement

An example for this adaptive improvement can be seen in Fig. 11, and we assume that h > 0 when A is located on top of
the crack surface, and h < 0 when A is located below the crack surface. For this case, the exact polar angle is h ¼ p. In addi-
tion, for a traditional local coordinate system, the polar angle of A is given as
h ¼ ðn1�Þ � arctg d1

d3

� 	
< 0 ð31Þ
and the error of this coordinate system is then e ¼ kp� hk > p, and the relative error is greater than 100%. In addition, for the
present improved coordinate system, the polar angle of A can be obtained using
Fig. 10. Local coordinate system for a crack tip.



Fig. 11. Example of a local coordinate system.
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h ¼ ðn2þÞ � arctg d2

d3

� 	
� p ð32Þ
It can be seen in Eq. (28) that d2 � d3, and the polar angle for the improvement coordinate system is then close to the
exact value p, and thus the present adaptive improvement is efficient.
5. Numerical examples

To certify the efficiency of the present continuous-discontinuous cellular automaton method for cohesive crack propaga-
tion modeling, the failure processes of two rock specimens are considered, which are given as follows.
h

l

P

Fig. 12. Model of three-point bending rock beam.

a. Center crack 

b. Eccentric crack 

Fig. 13. Crack propagation paths for three-point bending specimen.
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5.1. Three-point bending rock specimen

A simply supported rock beam is considered in this section, in which an imposed displacement is loaded on the top edge
at the center of the beam, as shown in Fig. 12. The physical and mechanical properties of the material are as follows: Young’s
modulus E ¼ 100 MPa, Poisson’s ratio m ¼ 0:0, tensile strength f t ¼ 1:0 MPa, and fracture energy Gf ¼ 0:1 N

mm. The geometry
of the model is as follows: the length of the specimen is l ¼ 10 mm, the height of the specimen is h ¼ 3 mm, and the depth is
d ¼ 1 mm. In addition, 1062 elements are used for the entire calculation in this three-point bending specimen.

Fig. 13 shows the crack propagation paths for the three-point bending specimen for two different initial crack locations,
where the initial crack shown in Fig. 13(a) is located at the center of the beam, and the initial crack shown in Fig. 13(b) is
located 0.7 mm from the center of the beam. It can be seen in Fig. 13(a) that the center crack propagates directly upward
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Fig. 14. Load-displacement response with different method.

Table 1
Original propagating angle for different methods.

Method Initial propagating angle

Traditional enrichment Enrichment of Eq. (12)

Center crack 0.01041 0.00015
Eccentric crack 0.25841 0.25243

No improvement

Adaptive improvement

Fig. 15. Comparison for growth path with and without adaptive improvement.
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toward the load point, and Fig. 13(b) shows that an eccentric crack also propagates offset from the initial line and toward the
load point, which shows agreement with the results from the method in [26].

The load displacement response of a three-point bending specimen with a center crack is shown in Fig. 14, in which a
comparison is given between with and without new enrichment and numerical experimental results by Wells and Sluys
[26]. one can see that the present method results with new enrichment agree well with the results by the numerical exper-
iments in [26], and loads are much larger than that without the new enrichment at the same displacements, then the
response with new enrichment is much more close to the numerical experimental results by Wells and Sluys [26].

To compare the efficiency of the present enrichment function, the initial propagating angles by different enrichment func-
tions are described in this section, which can be seen in Table 1, and the initial propagating angles in this table are obtained
using the present method, and only different enrichment functions are employed. One can see in this table that the present
method can obtain a much more accurate angle for the center crack example; in addition, if the present enrichment func-
tions are not singular at the crack tip, the integral accuracy may be much higher.

It can be seen in Fig. 15 that a comparison for growth path with and without adaptive improvement is plotted, in which
one can see that the growth angle without improvement is much more smaller than that of numerical experiment results,
and the reason is that without this improvement the errors of polar angle for some point is greater than 100%. With this
improvement, the polar angle for curve crack is much more accurate.

Based on these results, one can see that the calculating grids are independent of the cracks, and the agreement in the
results indicates the efficiency of the present method.
Fig. 16. Geometry and loading model of mixed mode fracture specimen.

 XFEM [32]

 CDCA

Fig. 17. Propagation paths with PS ¼ 10 kN for CDCA and XFEM.
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5.2. Mixed mode fracture test for a rock specimen

Amixed mode fracture test, which was performed in [32], is described in this section. As can be seen in Fig. 16, the dimen-
sions are 200 mm� 200 mm with a notch depth of 25 mm and width of 5 mm. The compressive and tensile strengths are
given as f c ¼ 46:24 N

mm2 and f s ¼ 3:67 N
mm2, respectively. The Young’s modulus is E ¼ 30 kN

mm2, the Poisson ratio is m ¼ 0:2,
and the fracture energy is Gf ¼ 0:11 N

mm. In addition, a shear load PS and normal load PN are considered.
Similar to [32], a shear load force PS is subsequently kept constant, and the specimens are loaded in the normal direction

by loading PN . The maximum circumferential stress is employed in this section, and 10,000 elements are considered for this
example.

The crack propagating paths obtained for a shear load of PS ¼ 10 kN are given in Fig. 17, and it can be seen that the results
of the present method are very close to those using XFEM [32]. Fig. 18 plots the load displacement response for a shear load
of PS ¼ 10 kN, and it can be seen that the curve of the load and displacement is very close between the present method and
XFEM [32], and that the peak loads in the normal direction obtained from both methods are much higher than that from the
experiment.
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Fig. 18. Load-displacement response for mixed mode fracture test with PS ¼ 10 kN.

 XFEM [32]
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Fig. 19. Propagation paths with PS ¼ 5 kN for CDCA and XFEM.
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Similar results were obtained for a shear load of PS ¼ 5 kN, as illustrated in Fig. 19, where it can also be seen that the prop-
agation paths of the present method are very close to those achieved using XFEM [32]. In addition, Fig. 20 shows the load
displacement response for a shear load of PS ¼ 5 kN, in which it can be seen that the curve from the present method agrees
well with the curve achieved through the experiment, and that the peak load by XFEM [32] is much larger than that from the
experiment [32].

The calculation of the present method is located in a local cell, and no assembled global stiffness matrix is needed during
the entire calculation process, thereby saving a significant amount of computer memory, which can be seen in Fig. 21, in
which the amount of computer memory required for XFEM is cut in half for the present method.

To compare the calculation efficiency between CDCA and XFEM, the CPU times for different cell numbers are plotted in
Fig. 22. It can be seen that the computer time required by the present method is a little long than that of XFEM, which will be
overcome by the fast successive over-relaxation updating method used in a follow-up work on CDCA, which will greatly
improve its calculation efficiency. The computer system used for the calculation is as follows: Intel Core 2 Duo E8400
CPU @ 3.0 GHz, 4 GB of memory, and Windows 7 operating system.

Fig. 23 shows the convergence of the present method, in which the average error for some fixed nodes indicates the rel-
ative error of displacement between the present method and the experiment, and the load is from 4 to 12 kN,
error ¼ jdN � dEj, where dN denotes the vertical displacement of the present method on the center point of the upper sides
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Fig. 20. Load-displacement response for mixed mode fracture test with PS ¼ 5 kN.
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of square, and dE denotes the vertical displacement through the experiment on the center point of the upper sides of square.
And the average error for some all nodes indicates the relative error of displacement between the present method and the
numerical results with 96,000 elements on all corresponding nodes. Here, it can be seen that the average relative error
decreases with the increase in the number of cells.
6. Conclusion

In the present paper, the implantation of a continuous-discontinuous cellular automaton (CDCA) method for cohesive
crack propagation modeling was described in detail. With a cohesive crack model, no singularities occur at the crack tip,
and therefore, the crack tip enrichment with singular functions is not suitable; thus, a group of new nonsingular additional
enrichment functions are employed instead of the traditional singular enrichment functions, which are consistent with the
nonsingular asymptotic stress field around a cohesive crack tip. Aiming at a devious crack path, improvement in the adaptive
crack tip polar coordinate is proposed for treating the local polar coordinate error caused by a devious crack-fracturing seg-
ment. Based on the cohesive crack model for quasi-brittle materials, a cellular automation model for a cohesive crack was
developed, including a cell model, cell state, and updating rules. Combining the above theories, CDCA for a cohesive crack
analysis was proposed, through which the cracking path can pass through any element, and no re-meshing is needed. In
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addition, the calculation is only limited to the cell locality, and no assembled global stiffness is required, which can avoid
certain difficulties caused by the different nodal freedoms for different nodes. Finally, some examples were given to show
that the proposed approach is efficient and accurate for simulations of cohesive crack growth in concrete and rock and
can be widely applied to certain areas of practical rock engineering.
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