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Summary

An approximate analytical solution is presented for the coupled seepage and

deformation problem of unsaturated soils. Because of the matric suction depen-

dence of both saturation and permeability coefficient, the coupled governing

equations are strongly nonlinear. To obtain an analytical solution, these

coupled governing equations are linearized and analytically solved for a speci-

fied saturation using the eigenfunction method. Then, the obtained analytical

solutions are extended to the entire saturation range. Comparison between

the current solution and the previous theoretical solution indicates that the

proposed solution yields excellent results. Due to its analytical nature, the

proposed procedure can be effectively used to obtain the solution of the coupled

seepage and deformation of unsaturated soils.
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1 | INTRODUCTION

Many geotechnical problems, such as precipitation‐induced slope failures and soil swelling and collapsing, involve the
coupling of deformation and seepage in unsaturated soils. With their obvious robustness and accuracy, analytical solu-
tions of such problems are helpful and sometimes even crucial in engineering practice. Because the conductivity and sat-
uration of unsaturated soil are matric suction dependent, the governing equations for the coupled seepage and
arameter; Ak, generalised Fourier coefficient for air; b, material constant; b, body force per unit volume;
Cai, partial differential equation coefficient; Cwi, partial differential equation coefficient; Cvi

a, partial
ifferential equation coefficients; D, drained stiffness matrix of the soil; f1(z), initial pore‐water pressure
tribution; F, ordinary differential equations initial conditions; g, vector of gravitational acceleration; g,
teger; j, integer; k, intrinsic permeability of the soil; k, intrinsic permeability of the soil; kai, air
rval; kra, relative air permeability; krai, relative air permeability at i‐th saturation interval; krw, relative
ability at i‐th saturation interval; kwi, water permeability coefficient at i‐th saturation interval; Ka, bulk
grains; Kt, bulk modulus of the porous medium; Kpi, slope of the saturation to suction; K, intrinsic
integer; n, porosity; N, ordinary differential equations coefficient matrix; p, pore pressure; pa, pore‐air
nent; pc, matric suction; pci, matric suction at i‐th saturation interval; pw, pore‐water pressure; pwi, the
ntry value; ri, eigenvector (i, 1,2); s, solid phase; S, saturation; Sarefi, reference air saturation at i‐th
n at i‐th saturation interval; t, time; u, displacement; u, displacement; ui, the i‐th displacement
ction; z, vertical position coordinate; α, Biot coefficient; γa, air weight per unit mass; γw, water weight
ton strain; λi, eigenvalues of matrix (i, 1,2); μa, dynamic viscosity of air phase; μw, dynamic viscosity of
phase; ρw, intrinsic mass density of water phase; σ, total external stress; σ', effective stress; χ, effective
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deformation of unsaturated soils are strongly nonlinear. Thus, it is generally difficult to obtain an analytical solution for
the problem. Perhaps because of this, most of the existing solutions of the coupled seepage and deformation problem are
numerical.1-5

Compared with its numerical counterpart, an analytical solution, if available, is much more robust and straightfor-
ward, providing an exact solution of a set of fully coupled equations for the verification of computer codes and semi‐
analytical solutions. Thus far, several analytical and quasi‐analytical solutions with different assumptions are available
for the initial/boundary problems related to unsaturated soils. Without considering the coupling of seepage and deforma-
tion, Srivastava and Yeh6 derived an analytical solution for 1‐dimensional rainfall infiltration toward the water table
through homogeneous and 2‐layer soils. Zhan and Ng7 used Srivastava and Yeh's solution to discuss the effect of hydrau-
lic parameters and rainfall conditions on the infiltration of unsaturated ground. Raats and Gardner8 introduced a
method to linearize the Richards equation using the Kirchhoff's integral transformation. Basha9 used the Green's
function to derive multidimensional nonsteady solutions for domains with prescribed surface flux boundary conditions
and bottom boundary conditions. Malekzadeh and Pak10 presented an analytical solution to a 1‐dimensional fully
coupled problem, in which the coefficients of the system of equations were assumed to be constant for the entire domain.

Neglecting the effect of pore air, Wu and Zhang11 derived an analytical solution to the coupled seepage and deforma-
tion of homogeneous unsaturated soils by virtue of the Fourier integral transformation. In this solution, the analytical
solution was obtained for a constant boundary and a constant porosity. Using linear elastic constitutive relationship,
Wang and Li12 derived analytical solutions to the 1‐dimensional coupled seepage and deformation equations of unsatu-
rated soils with 3 typical nonhomogeneous boundary conditions.

In this study, the governing equations of fully coupled seepage and deformation for unsaturated soils are first derived.
The coupled equations are then linearized, and the approximate analytical solution of the linearized coupled equations is
obtained for arbitrary initial and boundary conditions. Examples with 2 typical boundary conditions are presented to
illustrate the validity of the solution.
2 | GOVERNING EQUATIONS

2.1 | Balance equations

The unsaturated soils under consideration are viewed as the porous continua composed of a solid matrix (s) with inter-
connected pores saturated with water (w) and air (a). Each bulk phase is endowed with its own kinematics, mass, and
momentum, occupying the entire volume of the unsaturated porous media, V. Without loss of generality, it is assumed
hereinafter that (1) an isothermal condition prevails in the spatial domain of concern, (2) the deformation of the soil
matrix is linear elastic and infinitesimal, (3) the pore water is incompressible, (4) the effects of hysteresis are ignored,
and (5) the pore gas is an ideal gas. In addition, both the gas and water phases are viewed as simple fluids, ie, all the
effects of species diffusion in either water or gas phase are excluded.

Under the above assumptions, the coupled differential equations governing the flow of water and air through an
unsaturated porous medium can be written as13

n
∂S
∂t

þ S∇⋅
∂u
∂t

¼ ∇⋅
kkrw
μw

∇pw− ρwgð Þ (1)

n
∂ 1−Sð Þ

∂t
þ n 1−Sð Þ 1

Ka

∂pa
∂t

þ 1−Sð Þ∇⋅∂u
∂t

¼ ∇⋅
kkra
μa

∇pa− ρagð Þ (2)

where n is the porosity, S the saturation, ρα the intrinsic mass density of α(=a, s,w)phase, k the intrinsic permeability of
the soil, krα the relative permeability with respect to the α phase, μα the dynamic viscosity of α phase, pa the pore‐air
pressure, pw the pore‐water pressure, g the gravitational acceleration,u the displacement, and Ka the bulk modulus of air.

The linear momentum balance equation for the porous media as a whole is given by

∇⋅σþ b ¼ 0 (3)

where σ is the total external stress; b the body force per unit volume of the porous medium.
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2.2 | Constitutive relationships

The constitutive equations complement the governing equations by providing additional relationships between the
deformation and stress variables. To describe this relationship, the concept of effective stress is introduced. For unsatu-
rated soils, the Bishop's effective stress14 is adopted here, ie,

σ ′ ¼ σ−paδþ χ pa−pwð Þδ (4)

where σ′ is the effective stress, χ is called the effective stress parameter or Bishop's parameter, ranging from 0 to 1 for dry
and saturated conditions, respectively, and δ is the Kronecker delta. The term σ − paδ in Equation 4 is commonly called
the net stress, and pa − pw represents the matric suction, also known as the capillary pressure.

A popular form of Equation 3 is achieved by assuming that the Bishop parameter χ is identical to the degree of
saturation S,

15,16 ie,

σ ′ ¼ σ−paδþ S pa−pwð Þδ (5)

To account for the compressibility of solid material, the so‐called Biot coefficient can be introduced, and the effective
stress equation then becomes

σ ¼ σ ′−α Spw þ 1−Sð Þpað Þδ: (6)

The Biot coefficient, α, is given by α = 1 − Kt/Ks, where Kt is the bulk modulus of the porous medium and Ks is the
bulk modulus of the solid grains.

The stress‐strain relationship can be expressed as

σ′ ¼ D:ε (7a)

where D is the drained stiffness matrix of the soil and ε is the soil skeleton strain.
Substituting Equation 7a into Equation 6, it can be obtained as

σ ¼ D:ε−α Spw þ 1−Sð Þpað Þδ: (7b)

Assuming that the deformation of solid matrix is infinitesimal, the relationship between strain and displacement can
be expressed as

ε ¼ 1
2

∇uþ ∇uð ÞT
� �

: (8a)

Taking Equation 8 into Equation 7b, it can be obtained

σ ¼ D:
1
2

∇uþ ∇uð ÞT
� �

−α Spw þ 1−Sð Þpað Þδ: (8b)

Substituting Equation 8b into Equation 3, the governing equation for the deformation model can be obtained as

∇⋅ D:
1
2

∇uþ ∇uð ÞT
� �

−α Spw þ 1−Sð Þpað Þδ
� �

þ b ¼ 0: (9)

2.3 | Linearization of governing equations

Both the saturation and the permeability coefficient are functions of matric suction (pc = pa − pw) in an unsaturated soil.
Due to the presence of the saturation and permeability coefficient, the coupled differential equations are strongly
nonlinear. This fact leads to difficulties in analytically solving the couple d governing equations. In order to obtain an
analytical solution of the problem, it is instructive to linearize first the coupled governing equations. Supposed that
the degree of saturation varies within a range from S1 to S2, ie, S ∈ (S1,S2). To conduct the linearization, one may divide
the interval S ∈ (S1,S2) into m non‐overlapping segments with uniform spacing, ie,

S1 ¼ S10<S11<S12<……<S1m ¼ S2 (10)
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S1iþ1−S1i ¼
S2−S1
m

; i ¼ 0; 1; 2;…;m−1 (11)

According to the principle of mathematical analysis, there exists an integer m such that

Kpi ¼
dS
dpci

; S1i ≤S≤S1iþ1 (12)

whereKpi is constant. In addition, if S1i≤S≤S1iþ1 , the permeability coefficient can be assumed as a constant. Under these
conditions, the linearization of the coupled governing equations can be obtained as

nKpi

∂pa−pw
∂t

� �
þ Sref i∇⋅

∂u
∂t

¼ kkrwi

μw
∇⋅ ∇pw−ρwgð Þ (13)

−nKpi

∂pa−pwÞ
∂t

þ n
Saref i
Ka

∂pa
∂t

þ Saref i∇⋅
∂u
∂t

¼ kkrai
μa

∇⋅ ∇pa−ρagð Þ
�

(14)

∇⋅ D∇
∂u
∂t

− α Sref i
∂pw
∂t

þ Saref i
∂pa
∂t

� �
δ

� �
¼ 0 (15)

where, Sref i ¼ Si þ Siþ1ð Þ=2, and Saref i ¼ 1−Sref i .

For a 1‐dimensional problem, the governing equations can be simplified as

nKpi

∂pa−pw
∂t

� �
þ Sref i

∂2u
∂z∂t

¼ kkrwi

γwμw

∂2pw
∂z2

(16)

−nKpi

∂pa−pwÞ
∂t

þ n
Saref i
Ka

∂pa
∂t

þ Saref i
∂2u
∂z∂t

¼ kkrai
γaμa

∂2pa
∂z2

�
(17)

D
∂2u
∂z∂t

− α Sref i
∂pw
∂t

þ Saref i
∂pa
∂t

� �
¼ 0: (18)

Substituting Equations 18 into Equations 16 to 17, one obtains

∂pw
∂t

þ Cwi

∂pa
∂t

¼ Cw
vi

∂2pw
∂z2

(19)

∂pa
∂t

þ Cai
∂pw
∂t

¼ Ca
vi

∂2pa
∂z2

(20)

which is subjected to the following initial conditions:

pw z; 0ð Þ ¼ f 1 zð Þ; pa z; 0ð Þ ¼ f 2 zð Þ (21)

where

Cwi ¼
nDKpi þ αSref iSaref i

αS2ref i−nDKpi

Cw
vi ¼

kkrwiD

αμwγwS
2
ref i

−μwγwnDKpi
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Cai ¼
nDKaKpi þ αSref iSaref i Ka

nDSaref i þ αS2aref i Ka−nDKaKpi

Ca
vi ¼

kkraiDKa

γaμanDSaref i þ αγaμaS
2
aref i

Ka−γaμanDKaKpi

:

It should be noted that the governing equations, Equations 19 and 20, are a set of linear partial differential equations
with constant coefficients in the saturation domain of S1i≤S≤S1iþ1 . This set of linear equations is fully coupled in nature.
Compared with Equations 1 and 2, however, the difficulty in obtaining an analytic solution is greatly reduced. In the
following, the analytical solution of the above linear system is obtained under some initial and boundary conditions.
Then, an explicit approximate analytic solution of coupled problem in unsaturated soil is obtained by a continuation
method.
3 | ANALYTICAL SOLUTION OF LINEARIZED GOVERNING EQUATIONS

Based on the eigenfunction method for linear partial differential equation and the principle of superposition,17 the
exact solutions for the governing equations, Equations 19 and 20 under a specific boundary condition, assume the
following forms:

pw ¼ ∑
∞

k¼0
Ak tð ÞX ωkzð Þ (22)

pa ¼ ∑
∞

k¼0
Bk tð ÞX ωkzð Þ (23)

where Ak(t) and Bk(t) are generalized Fourier coefficients for air and water, respectively, both of which are functions of t.
X(ωkz) is a set of orthogonal functions determined from the boundary. The characteristic functions of different bound-
aries are shown in Table 1.

Substituting Equations 22 and 23 into Equations 19 to 21, and multiplying the resultants by X(ωkz), and then integrat-
ing the resultants from 0 to h with respect to z, one obtains a family of ordinary differential equations as

N
dpk

dt
¼ Kpk (24)

pk 0ð Þ ¼ F (25)

where,

pk ¼ Ak tð Þ Bk tð Þ½ �T
TABLE 1 The characteristic functions of different boundaries

Boundary Condition
at z = 0

Boundary Condition
at z = h X(ωkz)

Eigenvalues ωk's are
Positive Roots of Description

pa = 0 ∂pa
∂z

¼ 0
sin(ωkz) cos(ωkh) = 0 α = a or w

∂pa
∂z

¼ 0
pa = 0 cos(ωkz) cos(ωkh) = 0

pa = 0 pa = 0 sin(ωkz) sin(ωkh) = 0
∂pa
∂z

¼ 0
∂pa
∂z

¼ 0
cos(ωkz) sin(ωkh) = 0
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N ¼ ∫h0X
2 ωkzð Þdz 1 Cwi

Cai 1

� �

K ¼ ∫h0
d2X ωkzð Þ

dz2
X ωkzð Þdz Cw

vi 0

0 Ca
vi

" #

F ¼ 1

∫h0X
2 ωkzð Þdz ∫h0 f 1 zð ÞX ωkzð Þdz ∫h0 f 2 zð ÞX ωkzð Þdz

h iT

Equation 24 can be solved in a straightforward way, yielding

pk ¼ c1e
λ1tr1 þ c2e

λ2tr2 (26)

where, λ1 and λ2 are eigenvalues of matrix N−1K, r1 and r2 are the corresponding eigenvector. c ¼ r1 r2½ �−1F.
One obtains the exact solutions of the linearized coupled governing equations in as follows,

p ¼ ∑
∞

k¼0
c1e

λ1tr1 þ c2e
λ2tr2

� 	
X ωkzð Þ (27)

where,p ¼ pw z; tð Þ pa z; tð Þ½ �T .
4 | APPROXIMATE ANALYTICAL SOLUTION IN THE UNSATURATED
SOILS

Because the analytical solution is obtained for the linearized coupled equations, the previously described analytical
solution is effective in the small vicinity of the specified saturation. In order to obtain the solution over the full range
of saturation, the analytical solution needs to be extended. To this end, recall that the analytical solution is obtained over
the subinterval of saturation, S1i≤S≤S1iþ1 , over which the slope of the saturation to suction Kpi ¼ dS=dpci and permeabil-

ity coefficients kwiand kai are assumed constant. These parameters can be easily determined using some empirical
formula. Now, if the pore‐gas pressure, the pore‐water pressure, and displacement are, respectively, denoted by
pai z; tð Þ, pwi

z; tð Þ, and ui(z, t) in S1i≤S≤S1iþ1 , the approximate analytical solution over the whole range of saturation

(S1 < S < S2) can be obtained as

pa z; tð Þ ¼ ∑
i
pai z; tð Þ; pw z; tð Þ ¼ ∑

i
pwi

z; tð Þ; u z; tð Þ ¼ ∑
i
ui z; tð Þ: (28)

5 | EXAMPLES

5.1 | Example 1

To validate the previously derived analytical solutions, a typical example is computed using both the current solutions
and those developed by others (eg, Shan et al18). It is worthy of notice that the first example computes the analytic
solution of the linearized equation. This example has been used as a benchmark by many others such as Shan et al18

and Qin et al.19 The parameters used in the calculations are

Cw ¼ −0:75; Ca ¼ −0:0775134; Cw
v ¼ 5×10−18m2=s; Ca

v ¼ 6:45×10−7 m2=s

h ¼ 10m; f 1 zð Þ ¼ 40kPa f 2 zð Þ ¼ 20kPa:

Two typical boundaries are chosen as following:
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1. For the 1‐end drainage condition, the upper boundary is considered to be permeable to both air and water phases.
The lower boundary is impermeable to both air and water phases, ie,

pw 0; tð Þ ¼ 0; pa 0; tð Þ ¼ 0 (29)

∂pw
∂z z¼hj ¼ 0;

∂pa
∂z z¼hj ¼ 0: (30)

2. For the 2‐end drainage condition, the lower boundary is permeable to both air and water phases, ie,

pw 0; tð Þ ¼ 0; pa 0; tð Þ ¼ 0 (31)

pw h; tð Þ ¼ 0; pa h; tð Þ ¼ 0: (32)

The variations of pore‐water and pore‐air pressures with time and soil depth are presented in Figures 1 and 2 for the
1‐end and 2‐end drainage conditions, respectively. It can be seen that as time elapses, both pw and pa gradually dissipate
and finally approach to a stable value. Comparison between Figures 1 and 2 shows that both the pore‐water and pore‐air
pressure distributions are closely related to the boundary conditions.

Figures 3, 4 show the variations of pore‐water and pore‐air pressures with time at different depths (A–B) and with soil
depth at different times (C–D). As expected, the dissipation of pore‐air pressure is faster than the pore‐water pressure at a
given depth. The analytical results by Shan et al18 are also shown in the figure for comparison. It is found that identical
results are obtained from both analytical solutions, showing the validity of the current solution. Comparing Figures 3
and 4 shows that both water and air pressures dissipate faster under the 2‐end drainage condition than under the
1‐end drainage condition.
5.2 | Example 2

Example 1 is the analytic solution of the linearized unsaturated seepage deformation coupling equation in the vicinity of
a specified saturation and does not take into account the changes of saturation and permeability coefficients with
saturation. In this example, the same boundary conditions are used as in example 1. The initial condition is assumed
to be f1(z) = − 30kPa and f2(z) = 0kPa. The other parameters for water and air used in the seepage analysis are shown
in Table 2. The soil type is classified as sandy soil. Figure 5A shows the soil‐water characteristic curve at different pore
size distribution parameters (p0 = 1.5 kPa), and Figure 5B depicts the relative permeability‐saturation relationships for
water and air, which are described by van Genuchten's model20 and Mualem's model,21 respectively, ie,
FIGURE 1 Variations of pore‐water A, and pore‐air B, pressures with time and soil depth for the 1‐end drainage condition [Colour figure

can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 2 Variations of pore‐water A, and pore‐air B, pressures with time and soil depth for the 2‐end drainage condition [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 3 The variations of pore‐water and pore‐air pressures with time at different depths A‐B, and with depth at different times C‐D, for

the 1‐end drainage condition [Colour figure can be viewed at wileyonlinelibrary.com]
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S ¼ 1þ pc=p0ð Þ 1
1−a

h i−a
(33)

krw ¼ Sb 1− 1−S1=a
� �ah i2

(34)

kra ¼ 1−Sð Þ1=2 1−S1=a
� �2a

(35)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 4 The variations of pore‐water and pore‐air pressures with time at different depths A‐B, and with soil depth at different

times C‐D, for the 2‐end drainage condition [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Input parameters for analysis

Expression Description Parameter Value Unit

Intrinsic permeability k 10−13 m2

Air‐entry value P0 1.5 kPa

Hydraulic constant a 0.445 ‐

Hydraulic constant b 0.5 ‐

Air dynamic viscosity μa 0.018 g/m·s

Water dynamic viscosity μw 1.0 g/m·s

Bulk modulus of water Kw 2 GPa

Bulk modulus of air Ka 0.1 MPa

Bulk modulus K 33.3 MPa

Air density ρa 1.25 kg/m3

Water density ρw 1000 kg/m3

Porosity n 0.35 ‐

Drained stiffness D 11.1 MPa

Depth h 10 m
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where,p0 is a parameter that depends approximately on the air‐entry value, a is a parameter that is related to pore
size distribution, and b is material constant.

Figures 6, 7 present the results of the 3‐dimensional distribution of pore‐water and pore‐air pressures with time and
soil depth for the 1‐end drainage and the 2‐end drainage conditions, respectively. It can be clearly seen that as time
elapses, both pw and pa gradually dissipate and finally approach to a stable value. In addition, by comparing the results

http://wileyonlinelibrary.com


FIGURE 5 Hydraulic properties for seepage analysis. A, The degree of saturation vs capillary pressure curve at different pore size

distribution parameters (p0 = 1.5 kPa), and B, the relative permeability‐saturation relationships for water and air at different pore size

distribution parameters [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Variations of pore‐water A, and pore‐air B, pressures with time and soil depth for the 1‐end drainage condition [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 7 Variations of pore‐water A, and pore‐air B, pressures with time and soil depth for the 2‐end drainage condition [Colour figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Variations of pore‐water and pore‐air pressures with time at different depths A‐B, and with soil depth at different times C‐D, for

the 1‐end drainage condition [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Variations of pore‐water and pore‐air pressures with time at different depths A‐B, and with soil depth at different times C‐D, for

the 2‐end drainage condition [Colour figure can be viewed at wileyonlinelibrary.com]

LI AND WEI 953

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 10 Variations of displacement with time at different depths for the 1‐end drainage condition A, and the 2‐end drainage

condition B, [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Variations of pore‐water and pore‐air pressures with time at different a for the 1‐end drainage condition A‐B, and the 2‐end

drainage condition C‐D, (z = 5 m) [Colour figure can be viewed at wileyonlinelibrary.com]
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in Figures 6 and 7, it can be observed that the boundary conditions have significant effect on the pore‐water and pore‐air
pressures distribution.

Figures 8 and 9 depict the variations of pore‐water, pore‐air pressures with time at different depths and with soil
depth at different times. It is shown that the dissipation of pore‐air pressure is much faster than the pore‐water pressure.
In addition, although the fluctuation range of the pore‐air pressure is very small, compared with the pore‐water pressure,
it is generally not negligible in the analysis of unsaturated problems (Sun et al, 201522; Cho, 201623). Figures 8 and 9
compare the results of the analytical solutions and the numerical results obtained by the finite difference method,23,24

showing that the analytical solutions are consistent with the numerical results.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 12 Variations of displacement with time at different a for the 1‐end drainage condition A, and the 2‐end drainage condition B,

(z = 5 m) [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 10 shows the variations of displacement with time at different depths for the 1‐end drainage condition and the
2‐end drainage condition. It can be observed that collapse is induced by the saturation process. The negative displace-
ments gradually increase as time elapses and finally reach its maximum value. Moreover, the deeper the soil depth,
the larger the amount of negative displacement. By comparing the results in Figure 10A,B, one can see that, as expected,
the time for reaching the maximum negative displacement for the 2‐end drainage condition is faster than the 1‐end
drainage condition.

Figures 11, 12 show the variations of pore‐water and pore‐air pressures and displacement with time at different a
(z = 5 m). It reveals that as a increases, the pore pressure dissipates faster and negative displacement increases. That
is, the more uniform the pore size distribution, the faster the pore pressure dissipates. In addition, the pore‐air pressure
increases more significantly with the change of parameter a compared with the pore‐water pressure and displacement.
6 | CONCLUSION

In this study, an approximate analytical solution of 1‐dimensional coupled seepage and deformation of unsaturated soils
in any saturation interval is presented. The governing equations of coupled seepage and deformation are derived on the
basis of mass conservation principle, Darcy law, and Bishop's effective stress model of unsaturated soils. Due to the
presence of the saturation and permeability coefficient, the coupled differential equations are strongly nonlinear. After
that, the linear coupled equation is obtained by linearizing the saturation and permeability functions. According to the
characteristics of the linear equation and boundary conditions, the analytical solution is obtained by a linear superposi-
tion method. Finally, the analytical solution was further extended to the entire saturation interval. Excellent agreement
has been found between the results obtained by the present solution and those derived from existing theoretical
solutions.

In addition, based on the results of the approximate analytical solution, it can be found that effect of the change of
boundary conditions on the change of the pore‐air pressure and water pressure is significant. Although compared with
the pore‐water pressure, the fluctuation range of the pore‐air pressure is very small, the dissipation of pore‐air pressure is
faster than the pore‐water pressure. In addition, the more uniform the pore size distribution is, the faster the pore
pressure dissipates.
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