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Technical Note 
Physical Simulation Tests on Jointed 
Rock and Strength Prediction 
w. ZHUI" 
Z. LIANG~f - 
J. X U t  

INTRODUCTION 

Most rock masses encountered in engineering are 
jointed, with the joint sets generally somewhat regular in 
orientation and distribution. Therefore, emphasis will be 
mainly put on rock masses with regularly distributed 
joints. Because of the complicated mechanical properties 
of a rock mass, thorough study of the failure mechanism 
of the mass should be based upon successful physical 
simulation tests and careful monitoring of tests. The 
purpose of the research is to find a scientific method to 
predict the global strength of the rock mass. 

PHYSICAL SIMULATION TESTS ON THE JOINTED 
ROCK MASS 

Tests of the basic properties of model material 

Mechanical properties of model material should be 
analogous with that of the rock under consideration. 
They should not satisfy the principle of analogue but 
also be similar to the prototype rock mass in the 
constitutive relation curves. In particular, the material 
should have the dilatancy property, to which most 
researchers have not paid enough attention. After drying 
and testing, the authors obtained a mixture as a model 
material: sands, barites, white polyvinyl emulsion in a 
given proportion under pressure. 

Many small blocks are piled up with some interfaces 
among them and stuck together in part to form a block 
simulating a jointed rock mass. 

I. The mechanical properties of the model material and 
the stuck interface. The sample for uniaxial compressive 
tests has a size of 5 x 5 x 5 cm, in general with a special 
gravity of 2.2 x 104 N/m 3. The material made in 1990 has 
a uniaxial compressive strength of/~m = 0.87 MPa, an 
elastic modulus of Em= 170 MPa and a Poisson's ratio 
of /~ =0.22. The ratio of 0-0/R~m is 0.58 (a0 is the 
corresponding ¢r when the volumetric strain rate Ev = 0). 
This material, like most rocks, behaves with dilatancy 
s t r e n g t h / ~ .  From Brazilian tests the tensile strength is 
0.11 MPa. The shearing resistance from direct shearing 
tests is z = 0 . 3 2 + a  tan48 °. The material made in 
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1991 has parameters of /~m = 0.44 MPa, Em= 77 MPa, 
Cf = 0.29 MPa and ~p = 43 °. Some parts of the rock mass 
should be stuck to simulate the action of a rock bridge. 
The direct shearing tests of the bridges gave a strength 
very close to that of  the material. 

2. The shearing of  property of  the joints. The joints 
were simulated by the free contacted surface between 
the blocks. The samples of 1990 have the following 
stiffness and strength parameters: K s = 5 M P a / c m ,  
K~ = 75 MPa/cm, Cj = 0.01 MPa, ~pj = 39°; and for the 
samples of 1991, Ks = 1.96 MPa/cm, Kn = 49 MPa/cm, 
Cj = 0.01 MPa, ~pj = 37 °. 

Experimental study of the jointed rock mass under the 
condition of plane strain 

In the author's engineering practice, the rock mass 
surrounding some large hydraulic power stations has 
two nearly-orthogonal joint sets, each have a persistance 
rate of 50%. The orderly broken-line pattern of joint sets 
(Fig. 1) will be first studied herein. The large-scale rock 
mass model in testing is 100 x 50 x 14 cm in size. 

1. The strength of "broken-line pattern" of  rock 
masses. The loading path is to apply 0-~ and a2 simul- 
taneously up to a certain value first and keep ¢r 2 constant, 
then to increase 0-~ stepwise until the failure of samples 
occurs. Listed in Table 1 are the ultimate stresses for 
different 0-2 (0-: is the compressive stress along the 
direction perpendicular to the sample plane). 

Figure 2 shows the strain-stress curve for 
or: = 0.31 MPa, in which p = 1/3 (0-1 + 0-2 + 0-.-), q = 
{[(0-1 - -  O"2) 2 J r  (0"2 - -  0-:)2 ..1_ (0- :  - -  0-1 )2]/2} 1/2- A relation of 
q = 0.1 + 1.72p can be derived from the p and q values 
in Table 1 according to the Drucker-Prager yield cri- 
terion, Fig. 3 shows the strength relation among different 
cases (for testing in 1990). The shearing strength of the 
rock mass was obtained as c = 0.05 MPa, (p = 42 °. 

2. The strength of other patterns of a jointed rock 
mass. In 1991, the simulating tests were conducted on 
other rock masses with different joint sets, including: (a) 
( " = "  shaped single joint set); (b) ("2"  shaped set); and 
(c) ("T" shaped set). The latter two are double joint sets 
with a persistance of 50% (Fig. la). For simplicity, only 
those testing results of the "T"  pattern joint sets are 
listed in this paper (Table 1, 1991). The strength 
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Fig. 1. Patterns of  jointed model. 
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envelope equation can be obtained by fitting the peak 
values for four different lateral stresses using the least 
squares method, i.e. z = 0.03 + a tan 39 °. The corre- 
sponding strength relations are shown in Fig. 4. 

ANALYSIS OF THE FAILURE MECHANISM OF THE 
ROCK MASS 

The complexity of the failure mechanism of the jointed 
rock mass makes it difficult to understand. A scientific 
analysis should be carried out by comprehensive con- 
sideration and judgement to predict the rock mass 
behavior. For this purpose, fracture mechanics and 
existing results from it should be employed; in addition, 
stiffness analysis and local stress analysis are also 
needed. 

Stiffness analysis of tested samples 
The jointed areas in a rock mass will obviously be 

weak in stiffness. Take the broken line pattern of joint 
sets as an example first. The definition of tangential and 
normal stiffness will be based upon the Goodman joint 
element analysis. As shown in Fig. 5, a rock mass can 
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Fig. 2. Stress-strain relation of  model. 

be considered as two parts, consisting of two different 
pillars, that is, 1~ with joints and/2 without joints. 

1. Shearing stiffness. If  the shearing displacement 
on a joint surface is u = T/k, with a component of Ul = u 
cos p along al then the strain increment is AE~ = 
z cos [i[k~dt. On substitution of  the stress state analysis 
results in the expression for z, it can be shown that: 

(a~ - a2)sin 2ll cos 1/ 
AE~ = (1) 

2d|k, 
Z Normal stiffness. For the same reason, the normal 

stiffness relation on a joint surface is: 

v = a/k, = ½[(a~ + a2) - (a~ - a2)cos 2//]/kn 

and 
vl = v s in/~ 

and then 

AE'( v~ sin/~ [(cr~ + a~) -- (a'j - a2)cos 2//]. (2) 
a, 2d, ko 

The above two additional and the original strain of the 
simulating material make the total strain: 

~lj = Emm + A£) 

1 sin/] f 2 

' t + ~ [ ( ~  + a , )  - ( ~  - ~2)cos  281 • (3) 

It can be seen that the ratio of the effective elastic 
module E2 of LI to the original E is: 

Eo/E  = 
1 

[o-', - ~ ('~2 + o'~)] 

EIm/ElJ=I E - ~ 1  s i n / / f 2  , ( "  ~ }" 
[a~ -/~(a2 + a3)] + 47- (a, - a2)cos 2/~ + [(a~ + a2) - (a~ - a2)cos 2//] 

(4) 

Table 1 

Sample a l #2 a~ P q ao a o/a, 

90.I 0.31 0.00 0.02 0.II 0.30 0.19 0.61 
90.2 0.62 0. I0 0.05 0.26 0.55 0.40 0.65 
90.3 0.71 0.15 0.06 0.31 0.61 0.52 0.73 
90.4 1.45 0.25 0.23 0.64 1.21 1.25 0.86 
90.5 1.28 0.31 0.II 0.57 1.08 I.II 0.87 
91.2 0.12 0.01 0.03 0.09 0.73 
91.3 0.55 0.09 0.12 0.36 0.66 
91.4 0.69 0.14 0.I0 0.48 0.70 
91.5 0.44 0.05 0.06 0.26 0.60 
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Fig. 3. Strengths for material, joint and model mass. 

3. The modified coefficient of stiffness. The rock pillar 
of  L, has a smaller stiffness due to the joint sets in it and 
therefore bears a smaller stress of  a ; .  In contrast to this, 
the stress of  tr ~' on the/-2 rock pillar is somewhat greater. 
According to the geometric relation, it can be known 
that/-2 = $1 cos p and Lt = a sin/~, where $1 is the rock 
bridge length of  the first joint set, i.e. the length of  CE. 
From the equalization condition of  displacements and 
strains, the stress ratio is a~/a'/=EJE. Because 
$1 = a = 5 cm and ~ = 50 °, thus Ee/E = 0.33 for uniaxial 
compression. The real mean normal stress on plane BC 
is: 

,rl (11 + 12)/12 i !  trl = = thai = 1.50al (5) 
1 + E o / E  
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Fig. 4. Strengths for material, joint and model mass. 
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Fig. 5. Stiffness analysis for broken-line joint pattern. 

and that on plane AB is: 

, cr,(ll+12) Eo 
~r, = ~-+E-~ .  El---~ = t/, a 1 = 0.50al, (6) 

in which 

(11 + t2) (tl + 12) . 
th = (1 + Ee/E)12 }71 (1 + EJE)I, E '  

which shows a 300% difference between the two stresses. 
The calculated results for a2 ranging from 0.1 to 0.31 give 
the ratio of  EJE = 1/1.27 - 1/2.9. Therefore, in the case 
of  lateral pressure, Ee/E can be taken as 0.36 approxi- 
mately, i.e. 

a (  = 1.47al, cr~ = 0.53al. (7) 

Fracture mechanic analysis of joints in condition of com- 
pression and shearing 

In this TN, emphasis will be put on studying the joints 
of  cracks in a compressive stress field; consequently, the 
stress intensity factor of  the cracks with the same strike 
will be analyzed approximately first. Take the colinear 
plane cracks as in Fig. 6. The authors, taking into 
account the friction and cohesion on crack surfaces, 
derive the contributed force on the surfaces by integrat- 
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Fig. 6. Stress intensity factor analysis for colinear joints. 
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integrating the solution for a concentrated force from For different er 2 value in testing, the corresponding 6~s 
literature [3], i.e. can be calculated by substituting the given parameters 

(ha) l ~ b  t/na' : a k~ 2btan ~-~ a+~ 2 = • tan ~ ~--~) J0 

k , , = ~ 2 b t a n C ~ b ) ' r - - -  

J(sin'°  < , "  

na a P (x)c°s(-~b) C~2b tan(~--~) 
t an ~k /2 b t an (4 -b ) f0b  [{.  no\2 { .  rex\2 d x -  na . 

-?'"Z) 

For a compressive stress field, if k~ is taken as zero, then 
the following equation is obtained: 

kH = (~ + a tan ~b - c ) /2b tan(ha ) 'q (8) 

Concerning the mutual effects of  parallel joints sets, 
the stress intensity factor can be determined by introduc- 
ing some modifying coefficients resulting from an ana- 
lytic or numerical solution. For example, the intensity 
factor of  multi-parallel cracks of  the double period, k~i 
is k • kn while multiplying (8) by k. The effect of  the other 
joint set intersecting these joints is very complicated. The 
intensity factor can be determined by using another 
superposition factor k '  or one can be determined by the 
back analysis method. After remodifying, one can obtain 
k { l = k  " k " k n .  

If  the parameters of  k and k '  in equation (8) are given 
because of  ~ = ½(tr I - a2)sin 21/and a = -[~(a~ + a2) - 
½(a~ - a2)cos 2//] then the modified coefficient is ql [see 
(6) and (7)]. It should be noted here that er~ in (8) is the 
local normal stress after stiffness modification. In mod- 
elling tests for this pattern of  joint sets, the related 
mechanical and geometric parameters are a = 5cm, 
tan ~b = 0.81, c = 0.01 MPa and b = a, the measured 
knc = 0.73 MPa/cm ~/2. While taking k = k '  = 1.2 and 
substituting the parameters into the above expressions of  
kn and k~'~, letting k~] = knc the ultimate fracture stress 6~s 
will have the expression (corresponding to the initial 
compressive and shearing fracture) of: 

into (9) (Table 2). It can be seen from Table 2 that as a 
whole, the stress state is lower than the level at which 
shearing fracture occurs. 

Tensile strain and fracture condition in rock bridge 
areas 

The researchers in their series of  tests found, through 
careful observation of  the fracture phenomena occurring 
at the crack tips and between the cracks, that the 
compressive fractures took place at rock bridge areas or 
in the opposite direction to the original crack tip along 
which a secondary Griffith crack occurred [2, 4, 5]. The 
rock bridge between the two colinear cracks is the only 
way of  transmitting external loads, so a larger stress 
concentration will take place at the bridge. If the critical 
value of  the strain is taken as the strength criterion, one 
can find that a micro-tensile fracture will occur at this 
area first, which then becomes a larger tensile crack and 
develops extensively. Reyes [5] and Lemaitre [6] ex- 
pressed the fracture as such an area by using a damage 
variable. However, some parameters in this method are 
difficult to determine. Another method will be proposed 
in this paper, that is, when the strain at a tensile strain 
concentration area reaches that corresponding to the 
measured tensile strength, this creates unstable shearing 
fracture development and then cuts the rock bridge by 
shearing failure to form a through failure. What counts 
is a good knowledge of  the influence of  stiffness and the 

1 { 2k,,c + [sin 2 / / +  (1 + cos 2//)tan ~b]a2 + 2c} 
sin 2 / / -  (1 - cos 2//)tan ~b k.  k' ¢~/"b tan za  

V 

+ 2 cos/3 sin/3 - (cos/3 tan O)a2 + 2c 
g a  2 s i n / / ( c o s / / -  s in / / t an  O)tan 0 • k' 2b tan - ~  

(9) 

Table 2 

Sample 90- ! 90-2 90-3 90-4 90-5 Note 

a 2 0.00 I.I0 0.15 0.25 0.31 
tr 0 0.19 0.40 0.52 1.25 1.11 Value of inflection point 
d~ 0.31 0.62 0.71 1.45 1.28 Peak value (testing) 
OL, 0.59 1.04 1.24 1.72 1 .79 Computed value 
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Table 3 

Sample 90-1 90-2 90-3 90.4 90-5 Note 

tr 2 0.00 0.10 0.15 0.25 0.31 
o 0 O. 19 0.40 0.52 1.25 1 .11  Testing value 
~ 0.31 0.62 0.71 1.45 1.28 Peak value (tes.) 
Oit 0.19 0.43 0.57 0.81 1 .11  Computing value 
01~ 0.32 0.61 0.76 1.02 1.30 Peak value (com.) 

stress concentration extent to obtain a relatively accurate 
quantitative result. 

The ultimate tensile strain of a rock corresponding to 
its tensile strength can be expressed as [Et] = o.~/E (o.t is 
the rock's tensile strength). In this case, the strain to be 
checked near  the joint tip at the bridge is: 

1 
q = ~ [o.s -/~(o.~ + o.3)]. 

Letting this equation equal [Et], one can obtain a 
threshold value of o.~, o. °, when the macro-tensile failure 
o c c u r s :  

a° = 1 (o. s -  -- o.,) -- 0" 3 . (10) 
/t 

AS shown in Fig. 5, the stresses on BC with a 
concentration at C are not uniformly distributed; never- 
theless, their distribution is nearly linear, i.e. shaped like 
a trapezium (CmnB) and, consequently, the area of the 
trapezium equals that of  a rectangle o. ~' x BC, the slope 
of line nm should be linearly dependent on the lateral 
stress as; that is, the stress concentration factor will 
reduce with an increment of the lateral stress. In ad- 
dition, if it is supposed that the normal stress at C is 
o. ° = cm, then, according to geometric relations: 

o.~' = ( f +  eo.Oo. ° 

By substituting (10) into the equation, one can obtain 

o.[=Of+eo.2)[~ (o.s--o.,)--o.31, (11) 

where parameters f and e can be fitted from testing 
curves. Based upon the above-mentioned analyses, it is 
reasonable to suppose that the "knee point" of the 
volumetric deformation curve of the rock mass corre- 
sponds to the critical value of the ultimate tensile strain 
value [see equation (10)]. Taking stiffness modification 
and equation (11) into account, one can find 

O't -- 1 (f + eo'~)[l (o's - o'l) - o"] ' ~/t L" (12) 

in which 
E 0 a ) 

~ = E + Ec +-tanfls~ " 

The above equation shows that 01, is a critical value. 
The rock bridge will be seriously weakened due to tensile 
failure when at reaches O~t. Thus, the rock mass will 
deform under loading to make some joints reach an 
unstable development point and the joints in the sample 
will join together rapidly to make the whole rock mass 
reach an ultimate failure state. Determination of the 
parameters o f f  and e by using the values of o.0 for o. 2 = 0 

and 0.31 from Table 2 gives d = 0.66 and e = 1.06. For 
o-1 = 0.11 MPa and # = 0.22, the corresponding o-0 values 
can be calculated, shown in Table 3, by reference to the 
o.2 and o.3 values in Table 1. 

It can be seen from Table 3 that it is reasonable to take 
Oa as an equivalent value of the "knee point" of the 
sample's volumetric deformation curve. Except for 
sample 90-4, the results from the rest of the samples are 
very close to each other. 

Based on the above results, o.0 = 0~t can be considered 
as the turning point at which the unstable joint develop- 
ment starts, i.e.o.0 = ~t  is the knee point of the jointed 
rock mass volumetric deformation. The remaining prob- 
lems to be studied are to analyze the resistance curve of 
a joint failure developing and the developing rate. Sup- 
pose the developing length of a joint with length a is Aa. 
When the external load on sample i causes a peak ~;  of 
maximum principle stress, the developing rate of a joint 
can be expressed as (A~/a)/Ao.~ where Ao.1 = 0~ - o.0, The 
rate is in general related to the lateral stress a2. 

According to the simulation testing results listed in 
Table 1, an approximate linear relation can be obtained 
by substituting the related parameters and fitting it by 
the least squares method, namely, 

Aa/a= _5.16 o.2i + 3.92. (13) 
Ao.i o.0i 

For a given o.2i, the peak strength of a jointed rock 
mass, 0~i, can be derived from equations (12) and (13) 
as follows, 

01i = O'0i -3 t- Ao. i 

Aa/a 
= 01, + (14) 

-5 .16  0"2i + 3.92 
o.0i 

By substituting o-n values for different o.2 in Table 3 and 
Aa/a = 2.5/5 = 0.5 into equation (14), one will obtain 
various values. The results are also listed in Table 3. 

1.5 -- • °0 Tested O x 

x oi l ~ ~  
eL~" 1.0 -- + ~ i t ~  Computed ~ x S ~ ' "  

x /  1 1 + 

I~- 0.5 - _./~.11 ~ 

l i L 
0 0.1 0.2 0.3 

o2 (MPa)  

Fig. 7. Comparison of strength values for tested and computed stress 
levels. 
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Compared with the peak strengths of  the jointed rock 
mass from tests, most calculated ~ ,  values are close to 
each other, except for Sample 90-4. The above analysis 
shows that it can be concluded that the method for 
analyzing and calculating the jointed rock mass strength 
suggested above is effective. Shown in Fig. 7 are both 
tested and calculated results for two different stress 
levels, as well as the fitting curve. 

DISCUSSION AND CONCLUSIONS 

1. The simulation testing results on the samples with 
several orderly distributed joint patterns are given. It can 
be considered that the jointed rock mass strength is 
lower than the predicted one. The whole friction co- 
efficient is close to the mean value of the rock materials 
and the joint frictional coefficient when the rock has a 
joint persistance of  50%; whereas, the cohesion is much 
more closer to that of  the joint. 

2. Based upon the stiffness and the local stress con- 
centration analyses, the authors propose an approximate 
method to calculate the jointed rock mass strength for 
engineering convenience. The basic assumption of  the 
method is to consider the rock bridge to be damaged 
mainly caused by the high tensile strain due to stress 
concentration. As a result, the joint tips are tensilely 
damaged and even a macro-tensile failure zone will occur 

to make the joints develop along the compressive and 
shearing plane, join together and finally cause the whole 
failure of  the rock mass. The method described in this 
Note is able to deal with the influences of  various 
physical and mechanical parameters of  joints and ma- 
terials, as well as that of  the joint geometry distribution. 
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