Goldschmidt2007

Re-Os study of the Polish Kupferschiefer: implications for source and timing of metal enrichment

J. PAŠAVA¹, A. VYMAZALOVÁ¹, W. QU² AND W. KORZEKWA³

¹Czech Geological Survey, Prague, Czech Republic, pasava@cgu.cz

²Institute of Rock and Mineral Analyses, Chinese Academy of Sciences, Beijing, China

³ KGHM Cuprum Ltd. Pl. Jana Pawla II 1, 50-136 Wroclaw, Poland, wkorzekwa@cuprum.wroc.pl

The age and genesis of world-class copper deposits of the Kupferscheifer-type have been a subject of much debate with proposed synsedimentary to postdepositional models. The ¹⁸⁷Re- ¹⁸⁷Os isotope system has been successfully applied to generate whole rock isochrons in differently aged organic carbon-rich sediments.

Six samples of typically Cu-mineralized Upper Permian calcareous black shale and limestone of the Kupferschiefer type from the Lubin mining district (Poland) were studied for Re-Os isotopes, platinum group elements (PGE), and selected major and trace elements.

Mineralized black shales (Cu_{avg.} = 4.9 wt.%, Ag_{avg.} = 242 ppm, Pb_{avg.} = 138 ppm and Zn_{avg.} = 87 ppm) display low PGE values (Pt = $\langle 2 - 3.2 \text{ ppb}$, Pd = $\langle 2 - 2.8 \text{ ppb}$, Ru = $\langle 10 \text{ ppb}$, Rh = 0.4 – 5.2 ppb and Ir = $\langle 0.1 \text{ ppb}$) and c(Re) = 249.4 – 22174 ppb, c(Os) = 0.4831 – 1.0009 ppb and ¹⁸⁷Os/¹⁸⁸Os = 10.26 – 426.7. Lower base metal but comparable PGE, Re and Os values are typical for basal limestone. Calculated correlation coefficients indicate preferential Re affinity to Cu-sulfides and Os affinity to organic matter.

In a ${}^{187}\text{Os}/{}^{188}\text{Os}$ vs ${}^{187}\text{Re}/{}^{188}\text{Os}$ plot the entire data set defines an isochron corresponding to an age of 240 \pm 3.8 Ma, which most likely reflect late diagenetic/epigenetic metal enrichment.

The initial ${}^{187}\text{Os}/{}^{188}\text{Os}$ ratio of 0.99 \pm 0.22 is slightly less radiogenic but within the variation range of present-day seawater and excludes any significant contribution from hydrothermal/mantle or meteoritic PGE sources.

This work was financially supported by the EC in the frame of Bioshale European project (6th Framework program - NMP2-CT-2004-505710).